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ABSTRACT
We explore the idea of composing PUFs with the intent that the

resultant PUF is stronger than the constituent PUFs. Prior work

has proposed a construction, which subsequent work has shown to

be weak. We revisit this prior construction and observe that it is

actually weaker than previously thought when the constituent PUFs

are arbiter PUFs. This weakness is demonstrated via our adaptation

of the previously proposed Logistic Regression (LR) attack. We

then propose new constructions called PUFs-composed-with-PUFs

(P◦P ). In particular, we retain a two-layer construction, but allow

the same input to the composite PUF to be input to more than

one constituent PUF at the first layer. We explore this family of

constructions, with arbiter PUFs serving as the constituent PUFs.

In particular, we identify several axes which we can vary, and

empirically study the resilience of our constructions compared to

the prior construction and one another from the standpoint of LR

attacks. As insight in to why our family of constructions is stronger,

we prove, under some idealized conditions, that the lower-bound

on an attacker is indeed higher under our constructions than the

upper-bound on an attacker for the prior construction. As such,

our work suggests that composition can be a promising approach

to strengthening PUFs, contrary to what prior work suggests.
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1 INTRODUCTION
With the advent of Internet-of-Things (IoT) revolution, the number

of distributed and unsupervised mobile computing devices contin-

ues to increase, and experts believe there will be approximately
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100 billion connected devices by 2020 [16]. For such wide ranging

devices, authentication for counterfeit prevention and secure com-

munication is an important consideration. Physically Unclonable

Functions (PUF)s have recently been proposed as replacements for

non-volatile memories and on-die fuses that are prone to physi-

cal attacks for storing chip identifying digital signatures and seed

generators to other cryptographic functions [9, 17]. PUFs use inher-

ent manufacturing process variability to create circuits that appear

physically identical at design time, but produce distinct, die-specific

responses to input requests (or challenges) following fabrication.

Each chip may contain many such challenge response-pairs (CRP)s.

PUF architectures can be categorized as strong or weak. The

main difference is that a strong PUF must support a large CRP

space. Over the years, several strong PUF architectures have been

proposed [2]. However, most of these PUFs have also been shown to

be susceptible to successful modeling attacks. Through modeling at-

tacks, an adversary can mimic the behavior of the strong PUF with

a high prediction accuracy (around 95% or higher) rendering them

ineffective [1, 14]. An interesting approach proposed in [3] was to

compose PUFs such that the resultant PUF offered improved secu-

rity, which they called composite PUF (CPUF). The central thesis

underlying the approach was that compositions allowed increasing

the CRP space while also preserving the performance properties of

the resultant PUF. In a later work, the authors themselves identi-

fied that the CPUF was also susceptible to a two-phase modeling

attack [4] called the cryptanalysis attack (CA-ATK). They showed

that CA-ATK, although successful in modeling CPUF, required an

enumeration of a large CRP to conduct the attack.

In this paper, we start by reviewing CA-ATK, and show that

for certain constructions of CPUF, its susceptibility to an attack is

much worse than previously considered. Specifically, we propose

an enhancement to CA-ATK that uses logistic regression (LR) called

LR-CA-ATK to rid the need for the large number of enumerations

on constructions of CPUF using arbiter PUFs (ARB-PUFs). Despite

this, we contend that PUF compositions can offer an approach for

strengthening PUFs even in the presence of the LR-CA-ATK, but,

they require careful constructions. In particular, the manner in

which the challenges are mapped to inputs of the PUFs can signifi-

cantly contribute to the strengthening of the resultant composite

PUF. We theoretically show that mapping functions can take a cen-

tral role in strengthening the CPUF against the LR-CA-ATK, and

also provide supporting empirical validation.

1.1 Contributions
We revisit the idea of composing PUFs, each of whose domains is

smaller than {0, 1}i , to yield a PUF whose domain is {0, 1}i , and

has strength Θ(i)1. When we say “a strength of Θ(i),” we mean that

1
We use Θ(·) to denote an asymptotic tight bound, and O (·) to denote an asymptotic

upper-bound in a manner that is customary in computing[10].
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Figure 1: The ARB-PUF architecture [2].

the PUF is a realization of a random function p : {0, 1}f (i) → {0, 1},

where f (i) = Θ(i). Prior work suggests that composition is not an

effective strategy to increase the strengths of PUFs; for example,

the work of Sahoo et al. [4] yields a composition whose domain

is {0, 1}nm , but is a PUF whose strength is O(max{m,n}) only. We

first propose a general model for compositions of PUFs of which

the prior constructions are special cases. Two features of our model

are that it allows an input to the composition to be input to more

than one constituent PUF, and there are no restrictions on outputs

of constituent PUFs serving as inputs to other constituent PUFs.

We then propose restrictions on this general model so we can

meaningfully study the improvement in strength relative to prior

attempts at composition. We then prove, under some idealization

assumptions, that a lower-bound for an attacker is strictly higher

than the upper-bound on a prior construction. Indeed, our lower-

bound on the attacker is Θ(i), for a composition whose domain

is {0, 1}i . Thus, our analytical results suggest that even restricted

forms of composition can be effective.

We carry out an extensive empirical assessment of our con-

structions. We first enhance the CA-ATK using logistic regression

(LR-CA-ATK) that is known to be effective against prior construc-

tions [3, 4]. We leverage insights from LR-CA-ATK to explore the

use of mapping functions to strengthen composition of PUFs, and

propose a family of PUF compositions P◦P . Our work analytically

establishes that mapping functions improve the resistance to at-

tacks. We empirically evaluate several P◦P constructs against other

state-of-the-art PUFs, and show its resilience. We also intuit prop-

erties that makes P◦P resilient to LR-CA-ATK.

2 RELATEDWORK
Strong PUFs are used for authentication purposes while weak PUFs

are often used for secret key generation where the CRP require-

ment is limited. As a security measure, each CRP is used once only.

Consequently, when a PUF supports a large number of CRPs, i.e., is

strong, adversaries cannot ascertain them under a constrained time

frame [2]. Of course, the underlying function that the PUF realizes

must be a random function, or some close approximation of it, for

the PUF to be strong. Otherwise, even if the CRP space appears

large, the PUF cannot be said to be strong, as it can be characterized

fully with fewer CRPs than the size of its domain suggests.

Figure 1 shows the ARB-PUF [2], which is one of the most investi-

gated strong PUFs. ARB-PUF has two identical delay paths that race

from left to right through n stages of multiplexers that are driven

by the challenge bit. If the Data (D) arrives faster than the closing

edge of the clock, the output (Y) makes a positive transition. An n
bit challenge directs these paths through n multiplexers. The latch

at the output acts as an arbiter selecting the edge arriving early [2].

The n bit challenges result in 2
n
unique path pairs, which is also

known as the architecture’s CRP space. There are several variants

of the ARB-PUF that strengthen its security properties. For example,

XOR-PUF [5] and LWS-PUF [7] both deploy multiple ARB-PUFs in

parallel, but they use different strategies for processing challenge

bits and producing response bits. Prior research demonstrated that

realizations of strong ARB-PUF and its variants are susceptible

to modeling attacks [1, 13, 14]. Amongst various ARB-PUFs, the

LWS-PUF exhibits strongest resistance against machine learning

modeling attacks [14].

Composite PUF [3] presented an approach to design strong PUFs

using composition of PUFs. An important observation in their work

was that PUF compositions increase the CRP space while preserving

important performance properties [3]. Their work focused on a

two-layer composition where the outputs of the first layer are

fed as challenge inputs to the second layer PUF [4]. While their

compositions were successful in increasing the CRP space, the

proposers of this approach themselves identified a cryptanalysis

attack (CA-ATK) that successfully modeled the composite PUF [4].

However, CA-ATK required an enumeration of the entire CRP space

to be successful. In this work, we show that an enhanced version

of the CA-ATK with machine learning could significantly improve

the performance of the attack. Similarly, MPUF [8] is a composite

PUF with two layers, which is susceptible to a modeling attack.

Although recent research on PUF compositions has rendered the

resulting architectures susceptible to attacks, we believe that the

idea of composing PUFs is of genuine scientific value.

3 PUFS FROM COMPOSITION
We now introduce a general model for how PUFs can be composed

to yield other PUFs. Then, we discuss the family of PUFs within

that model on which we focus in this paper. That family includes,

as special cases, certain constructions from prior work [3].

A PUF is a physical realization of a function, p : {0, 1}i → {0, 1},

i.e., it maps an i bit input to a one bit output. Its intent is to serve as a
random function, i.e., a function chosen uniformly from the set of all

functions that map i bits to one bit. We perceive a PUF that results

from composition as a directed graph, P = ⟨VP ,EP ⟩; we show two

examples in Figure 2. Each vertexu ∈ VP is a PUF. Each edge, e ∈ EP ,
maps a PUF to an input of another PUF. Thus, EP can be perceived

as a relation, EP ⊆ VP ×VP × Z+, where Z+ is the set of positive
integers, where ⟨u,v, j⟩ ∈ EP means that the output of the PUF u

is provided as the jth input of the PUF v . Our constraints are that
given an edge ⟨u,v, j⟩, where v : {0, 1}iv → {0, 1}, (i) 1 ≤ j ≤ iv ,
and, (ii) for every ⟨v, j⟩, there is exactly one edge incident on it,

i.e., there is exactly one u ∈ VP such that ⟨u,v, j⟩ ∈ EP . In Figure

2, in the PUF to the left, the output of the constituent PUF c1 is
the first input to each of c2 and c3. So we have edges ⟨c1, c2, 1⟩ and
⟨c1, c3, 1⟩.

To represent inputs to and outputs from the composed PUF as

a whole, we assume that we have two distinguished sets of edges,

inp, outp ⊆ EP , where each edge in inp has no source vertex, and

each edge in outp has no destination PUF input. That is, the former

is of the form ⟨·,v, j⟩, and the latter is of the form ⟨u, ·, ·⟩. In Figure 2,
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Figure 2: Examples of PUFs from composition of other PUFs.
To the left, the constituent PUFs are in three levels to yield a
compositionwhose domain is {0, 1}4. To the right is a compo-
sition with domain {0, 1}8, with the constituent PUFs in two
layers. The PUFs at the first layer, c4 and c5, are each 3-input
PUFs, and share two inputs to the composition.

the two inputs to the far left are input to the constituent PUF c1. The
output of the constituent PUF c3 is the output of the composition.

Restrictions. We now consider restrictions to the above rather

general model for composition. As Section 4 establishes, notwith-

standing such restrictions, we can realize PUFs which, asymptoti-

cally, yield the maximum possible attack-resistance. Futhermore,

such restrictions yield more feasible constructions in practice. We

present increasing restrictions that culminate in the family that

captures prior work on compositions, and on which we focus.

As a first restriction, we require that the graph P = ⟨VP ,EP ⟩
is acyclic. Both PUFs in Figure 2 are acyclic. By acyclic, wemean that

the conventional directed graph ⟨VP , FP ⟩, where FP =
{
⟨u,v⟩ ∈ V 2

P |

⟨u,v, j⟩ ∈ EP for some j}, is acyclic. Given such a PUF that is acyclic,
we can consider its topologically sorted version, i.e., one in which

all edges go from left to right only. This allows us to associate a

level with each constituent PUF. The PUF to the left in Figure 2

is a composition of three PUFs, each at a level. We could further

constrain the levels to be the stricter layers. A constituent PUF is at

Layer 1 if the only edges incident on it are those from inp, the set of
inputs to the composition as a whole. Then, for a PUF at layer l > 1,

all edges incident on its inputs are those from PUFs at layer l − 1.

The PUF to the right in Figure 2 is such a layered construction.

Family on which we focus. The family of PUFs from composition

on which we focus are layered constructions, with two layers only,

Layers 1 and 2. The inputs to the composition are inputs to the

constituent PUFs at Layer 1. The outputs from the PUFs at Layer

1 serve as inputs to a single PUF at Layer 2. The output from the

constituent PUF at Layer 2 is the output to the composed PUF as a

whole. An example is to the right in Figure 2.

More specifically, we associate our compositions with four pa-

rameters. (i) The number of inputs to the composition as a whole, i .
In the PUF to the right in Figure 2, i = 8. (ii) The number of inputs

to each constituent PUF at Layer 1,m. We adopt the restriction that

each PUF at Layer 1 takes the same number of inputs. In the PUF

to the right in Figure 2,m = 3. (iii) The number of partitions, r , on
the inputs, where the inputs in a partition serve as input to only a

subset of the Layer 1 constituent PUFs. Each such partition on the

inputs then induces a partition on the Layer 1 PUFs, which are the

ones that are fed those inputs. In the PUF to the right in Figure 2,

we have r = 2 partitions. The first four inputs are in one partition,

and the others are in the other. This partition on the inputs induces

the partition {c4, c5}, {c6, c7} on the Layer 1 PUFs. Last, (iv) the

number of input bits that each PUF at Layer 1 has in common with

another PUF at Layer 1, denoted s .
In the PUF to the right of Figure 2, s = 2, because each of

c4, . . . , c7 shares 2 bits of input with another PUF at Layer 1. We

adopt the restriction that the s is the same for all Layer 1 PUFs.

Notation. The notation we adopt to denote a PUF in our family is

[i,m, r, s] . For example, the PUF to the right in Figure 2 is denoted

[i = 8,m = 2, r = 2, s = 2].

3.1 The Cost of Realizing Compositions
We must acknowledge that we cannot get PUFs that are strong and

resistant to attack without a cost. In Section 7, we characterize the

hardware cost, in actual numbers, of our constructions. Here, we

give a more abstract characterization.

The cost of constructing PUFs for the family of compositions

we address can be characterized meaningfully as the size and

number of constituent PUFs. The dominant factor is the number

of Layer 1 PUFs. For [i,m, r, s], the number of Layer 1 PUFs is

q = r

(⌈
i
r −m
m−s

⌉
+ 1

)
. We observe that if s is large, e.g., s =m−1, then

the worst-case for q is Θ(i); that is, the number of Layer 1 PUFs

corresponds to the number of inputs. In this case, one may argue

that a composition is not necessary at all, because if we have Θ(i)
Layer 1 PUFs, then the Layer 2 PUF takes Θ(i) inputs. Therefore,
we may as well simply not have the Layer 1 PUFs at all, and merely

adopt the Layer 2 PUF as our PUF. However, we observe that for

other values of s , the composition can perform quite well from the

standpoint of cost. When s = Θ(1) and r = Θ(1), e.g., if s = 1, r = 1,

then q = O
(
i
m

)
. We argue that this cost is quite favorable. For one

thing, it is, asymptotically, the same cost as the CPUF. However,

as we establish in the next section, we get better attack-resistance

than the CPUF. For example, ifm ≤ i
2r , then the lower-bound for

an attacker from Claim 2 in the next section exceeds the
i
m 2

m +2
i
m

upper-bound on an attacker for the CPUF.

In summary, security is not without cost. However, we observe

that with the kinds of compositions our model admits, we can trade

cost for better security.

4 ANALYSIS OF RESISTANCE TO ATTACK
We now establish, analytically, the level of resistance of an instance

from our family of PUFs to attack. We assume an attacker that seeks

to fully characterize a PUF. By that we mean the following. Given

a PUF p : {0, 1}i → {0, 1}, we say that p is fully characterized by

a function f : {0, 1}i → {0, 1} if f (x) = p(x) for all x ∈ {0, 1}i

with probability 1. In practice, we typically relax this probability,

e.g., to 95% only. We say that an attacker has fully characterized p
when he is in possession of such an f . This is the same attacker

characterization as has been adopted in the literature.

An attacker is provided the following capabilities. (i) Black-box

access to p. That is, the attacker is allowed to exercise p with inputs,

and observe the corresponding outputs. And, (ii) the attacker knows

the design of the composition. That is, in our case, he knows i,m, r
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and s given a PUF [i,m, r, s], and the manner in which the PUF

is constructed from those parameters. Thus, the only thing the

attacker does not know are the actual functions that the constituent

PUFs realize.

We quantify the strength of a PUF’s resistance to attack as the

number of queries the attacker needs to perform to the black-box. If

for a PUF p, the attacker must perform np queries to the black-box,

and for another PUF q the attacker must perform nq queries, and

nq < np , then we deem the PUF p to be strictly more resistant to

attack than the PUF q.
In our analysis below, we make the following idealization as-

sumption. We assume that each constituent PUF is a random func-

tion. The reason we do this is that, our analysis pertains really to

the manner in which we compose, rather than some artifact of the

constituent PUFs.

Notation. Our focus is the Layer 1 PUFs in the composition.

Given a composition [i,m, r, s], as we point out in the previous

section, the number of Layer 1 PUFs is q = r

(⌈
i
r −m
m−s

⌉
+ 1

)
. We

denote these as c0, c1, . . . , cq−1, with c0, . . . , c i
r −1

in the first par-

tition, c i
r
, . . . , c 2i

r −1
in the second partition and so on. We denote

as C : {0, 1}i → {0, 1}q the concatenation of outputs from all the

Layer 1 PUFs. For a set X ⊆ {0, 1}i , we denote as C[X ] the set

{C(y) ∈ {0, 1}q | y ∈ X }, i.e., all possible outputs from the Layer 1

PUFs on inputs from X . Thus, C
[
{0, 1}i

]
is the range of C .

Suppose the set of queries the attacker issues to the black-box

is B ⊆ {0, 1}i . The corresponding set of outputs is C[B]. Then, we
have the following claim.

Claim 1. If a PUF from composition [i,m, r, s] has been fully
characterized after queries from B ⊆ {0, 1}i , thenC[B] = C

[
{0, 1}i

]
.

We can prove the above claim by contradiction. If there exists

some input y ∈ {0, 1}i such that C(y) < C[B], then given that the

Layer 2 PUF is a random function, the attacker has at best a 1/2

probability of guessing the output of the PUF [i,m, r, s] on input y.

Claim 2. There exists a PUF from composition [i,m, r, s] for which��C [
{0, 1}i

] �� ≥ 2
q , where q = r

(⌈
i
r −m
m−s

⌉
+ 1

)
.

The proof for the above claim is by observing that if every Layer 1

PUF is xor, ⊕, of its input bits, then we have a sequence c0, c1, . . . , cq

of Layer 1 PUFs, where q = r

(⌈
i
r −m
m−s

⌉
+ 1

)
, such that c j has an input

that is not input to any ck where k < j . That is, every PUF as we go
forward in that sequence has a “new” input. Thus, the concatenation

of outputs of that sequence of Layer 1 PUFs is every bit string from

{0, 1}q when those Layer 1 PUFs are xor of their respective inputs.

Consequence. Claim 2 establishes a lower bound on the number

of possible outputs from the Layer 1 PUFs. Claim 1 establishes that

a lower bound on the attacker is that the number of black-box

queries she issues must be at least the number of possible outputs

from the Layer 1 PUFs. Together then, Claims 1 and 2 establish that

a lower bound on the number of queries to the black-box that an

attacker must issue to be confident that she has fully characterized

[i,m, r, s] is 2q , where q = r
(⌈

i
r −m
m−s

⌉
+ 1

)
.

If s = Θ(m), r = Θ(1) andm = O(i), then q = Θ(i). That is, under
the assumption that the constituent PUFs are random functions,

there exist PUFs that result from the composition whose strength is

asymptotically bounded tightly by exactly the maximum possible

CRP space, 2
i
. Example values for s, r andm that meet the sufficient

condition for this to be achieved are s =m − 1, r = 1 andm = i/16.
We can compare the above lower-bound to the upper-bound

to successfully attack a CPUF [4]. There, notwithstanding what

the constituent PUFs are, an upper-bound number of queries to

the black-box for a successful attack is
i
m 2

m + 2
i
m . Measured as

bits, this strength isO
(
max{m, im }

)
. This suggests that our broader

admittance of ways to compose PUFs can be effective in yielding

PUFs whose strength matches that of the maximum possible for

a particular input size. The CPUF merely happens to be a weak

member of the family.

5 MODELING ATTACKS
We now shift our focus to how our constituent PUFs are actually

built. We start by considering attacks against PUFs that have been

shown to be effective in prior work. In particular, we focus on a

composite PUFwhose constituent PUFs are ARB-PUFs. The state-of-

the-art modeling attack against ARB-PUF is the logistic regression

(LR) attack [14] that uses a linear additive model (LAM) tomodel the

PUF. However, directly applying this attack to CPUF does not work

as it does not capture multiple layers of PUFs in the architecture.

Authors in [4] proposed a specific attack targeting composite PUFs,

which they call a cryptanalysis attack (CA-ATK). We review CA-

ATK [4], and present LR-CA-ATK on composite PUFs made up

from ARB-PUFs that uses machine learning for its second phase.

Note that both CA-ATK and LR-CA-ATK focus on modeling CPUF

instances, which corresponds to s = 0 in the family we discuss.

5.1 Overview of CA-ATK
CA-ATK is split into two phases and in this section we focus on

constructing the model for a CPUF P [i = nm,m =m, r = n, s = 0].

Phase 1. In the first phase, for each Layer 1 PUF pi , the attacker
partitions the challenge space Ci = {0, 1}m of pi into two sets

Si,0 and Si,1. Let us assume that a and b are two challenges in

Ci . If a ∈ Si,0 and b ∈ Si,1 then pi (a) , pi (b). This means that

the two challenges produce different outputs for pi . Similarly, if

a, b ∈ Si, j , j ∈ {0, 1}, then pi (a) = pi (b) with high likelihood,

which means the two challenges are likely to produce the same

output for pi . To construct the sets Si,0 and Si,1, one selects two
m-bit challenges from Ci , and extends them tomn-bit challenges
x and y by simply keeping the extended bits the same in both

extended versions. If P(x) , P(y), then the attacker can be sure

that the correspondingm-bit challenges are not in the same set. If

P(x) = P(y), then the attacker can not be sure that they are in the

same set. However, one can repeat this procedure multiple times

by changing the extended bits.

Phase 2. In this phase, the attacker uses the information from the

first phase to enumerate the challenge space of the Layer 2 PUF.

Algorithm 1 shows the steps in the second phase. Notice that the

collected information in Si,0 and Si,1 is used to construct an input

challenge to the composed PUF. It does this by selecting an n-bit
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Algorithm 1: Class-Construction(S , P )
Input :S = {Si,0, Si,1 |0 ≤ i < n} and CPUF P
Output :Set of special CRPs Y and the response vector

y ∈ {0, 1}n

1 Y = ∅;

2 y = 0;
3 for u = (u0,u1, ...,un−1) ∈ {0, 1}n do
4 c = (c0, c1, ..., cn−1), ci ∈ Si,ui ;

5 yu = P(c);
6 Y = Y ∪ {(c,yu)};

string u, and replacing one of the sub-strings ui with an m-bit

string from the first phase. The resulting string c is applied to the

composed PUF P , and the challenge response pair is saved. Notice

that this approach requires enumerating the n-bit challenge space.

6 LR-CA-ATK: ENHANCED ATTACK
We propose an enhanced attack on ARB-PUF based CPUF which

exploits the property of outputs of Layer 1 PUFs and LAM for ARB-

PUF. In phase 1 of CA-ATK, we make a guess about the Layer 1

PUFs by assigning their challenges to Si,0 or Si,1. We show that the

guess can be characterized by a vector x ∈ {0, 1}n and this can be

exploited to construct the LR-CA-ATK. In this section, we focus on

constructing the model for a PUF [i = nm,m =m, r = n, s = 0].

We denote the attacker’s guess for the i-th Layer 1 PUF as p̃i ,
which is constructed in phase 1. Thus, p̃i (a) = j, for a ∈ Si, j . The
number of possible guesses an attacker makes about the output

of the Layer 1 PUFs is large, however, we show that this can be

fully characterized by an n-bit string. Specifically, we show that

this applies to every Layer 1 PUF pi in Theorem 1.

Theorem 1. For all 0 ≤ i < n, c ∈ {0, 1}m , p̃i (c) = pi (c) ⊕ xi ,
where xi ∈ {0, 1} and ⊕ is binary exclusive-or.

Proof. We choose an arbitrary challenge of pi : d ∈ {0, 1}m . If

pi (c) = pi (d), then c and d belong to the same set; thus, p̃i (c) =
p̃i (d). If pi (c) , pi (d), then c and d belong to different sets; thus,

p̃i (c) = 1⊕p̃i (d). In both cases, p̃i (c) = pi (c)⊕p̃i (d)⊕pi (d) holds. □

According to Theorem 1, the attacker’s guess of pi is determined

by a secret bit xi = p̃i (d) ⊕ pi (d). Another fact we utilize is the

LAM used for attacking ARB-PUF. In [13], the ARB-PUF P with

n-bit challenge can be modeled as

P(c) = sдn(wϕ) = sдn(wF (c)),

where w ∈ Rn+1 and ϕ ∈ {−1, 1}n+1 is defined as:

ϕi = F (c)(i) =

{
(−1)ciϕi+1 =

∏n
j=i (−1)

c j , if 0 ≤ i ≤ n − 1

1, if i = n
. (1)

We then show in Theorem 2 that if the challenge of an n-bit
ARB-PUF P is XOR’ed with a secret key x ∈ {0, 1}n , it can still be

modeled with a LAM. The theorem shows that an ARB-PUF with

XOR operation between a secret vector and its challenge is equiva-

lent to another instance of ARB-PUF. Also, this theorem allows us

to exploit the property of the attacker’s guess in Theorem 1.

Algorithm 2: Enhanced-Class-Construction(S, P ,D)
Input :S = {Si,0, Si,1 |0 ≤ i < n}, CPUF P and

D ⊆ C = {0, 1}nm is a set of N challenges of P .
Output :A LAM for Pn

1 E = ∅;

2 for c ∈ D do
3 u = (u0,u1, ...,un−1), where ci ∈ Si,ui ;

4 E = E ∪ {(u, P(c))};

5 Compute model Pn with LR, given CRP set E;

Theorem 2. P(c ⊕ x) = sдn(wF (c ⊕ x)) = sдn(vF (c)), where
w, v ∈ Rn+1 and P is an n-bit ARB-PUF.

If we choose vi = wi
∏n

j=i (−1)
x j

for i < n and vn = wn , then

Theorem 2 holds.

Now let us combine Theorem 1 and Theorem 2 to illustrate the

weakness of CPUF. According to Theorem 1, the guess made in

phase 1 of the CA-ATK about the output Layer 1 PUFs is actually

not far from the actual output of these PUFs. If one knows about

the secret string x, this person could derive the actual output of

the Layer 1 PUFs. And Theorem 2 shows that if the Layer 2 PUF

is an ARB-PUF, this ARB-PUF is equivalent to another ARB-PUF,

whose CRP space is defined by the guessed output and the original

responses. These observations imply that an attacker does not need

to explicitly obtain the secret string x to build the model for the

Layer 2 ARB-PUF. Previous work has shown that building models

for ARB-PUF with LR can be done efficiently [13], which we exploit

here. We formalize these observations in Theorem 3.

Theorem 3. Let P be a [i = nm,m =m, r = n, s = 0]. c ∈ {0, 1}nm

is a challenge of P , r = (p0(c0),p1(c1), ...,pn−1(cn−1)) is the response
vector of Layer 1 PUFs, r̃ = (p̃0(c0), p̃1(c1), ..., p̃n−1(cn−1)) is the re-
sponse vector constructed in phase 1 of the CA-ATK and x is a vector
in {0, 1}n that determines the guess, then

P(c) = pn (r) = pn (r̃ ⊕ x) = sдn(vF (r̃)),

where pn is the Layer 2 PUF.

Algorithm 2 shows the procedure of using Theorem 3 to model

the Layer 2 ARB-PUF. The attacker first randomly chooses a set D
of nm-bit challenges. For each challenge in D, the attacker applies
the reverse transformation as is done in Algorithm 1 to get a set

of challenges of n-bit. This reversed transformation replaces every

m-bit component with a single bit, based on whether the m-bit

component is in S ·,0 or S ·,1. These challenges, combined with their

corresponding responses, are fed into the LR attack to train a model

for the CPUF. Compared to Algorithm 1, Algorithm 2 does not

require the enumeration of all strings in {0, 1}n . The size of CRP

set required is N = |D |, which can be much less than 2
n
.

In summary, for an n-bit P◦P , the attacker needs to enumerate

2
n
CRPs to build the model. This is impractical for large values of n.

Thus, an attacker cannot efficiently attack P◦P with this technique.

Furthermore, an attacker could attack ARB-PUF based CPUF more

efficiently yet P◦P is not subject to this.

© 2019 IEEE.  Personal use of this material is permitted.   Permission from IEEE must be obtained for all other uses,  in any current or future media,  including 
reprinting/republishing this  material for advertising or promotional purposes, creating new collective works,  for resale or redistribution to servers  or lists, or 
reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICCAD45719.2019.8942176

Z. Wu, H. Patel, M. Sachdev, and M. Tripunitara, “Strengthening PUFs using Composition,” in proceedings of IEEE/ACM International Conference On
Computer Aided Design (ICCAD), Nov. 2019, pp. 1–8. doi: 10.1109/ICCAD45719.2019.8942176.



Conference’17, July 2017, Washington, DC, USA Z. Wu et al.

0.0 0.5 1.0 1.5 2.0
Number of evaluations (×106)

(a)

0.5

0.6

0.7

0.8

0.9

1.0

P
re

d
ic

ti
o
n

A
cc

u
ra

cy

[i = 64,m = 2, r = 1, s = 1]

[i = 64,m = 4, r = 1, s = 3]

[i = 64,m = 2, r = 2, s = 1]

[i = 64,m = 4, r = 2, s = 3]

CPUF(64, 2)

CPUF(64, 4)

FF-PUF(64, 6)

MPUF(64)

XOR-PUF(64, 2)

LWS-PUF(64, 2)

ARB-PUF(64)

26 29 212 215 218

Number of CRPs used in Phase 2 (log scale)
(b)

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
0.95

P
re

d
ic

ti
o
n

A
cc

u
ra

cy

CPUF(6, 3)

CPUF(9, 2)

[i = 18,m = 2, r = 2, s = 1]

[i = 18,m = 2, r = 3, s = 1]

[i = 18,m = 4, r = 2, s = 3]

[i = 18,m = 4, r = 3, s = 3]

Figure 3: (a) P◦P versus state-of-the-art PUFs using ES modeling attack, and (b) P◦P against CPUF while varying the number
of training CRPs for Phase 2 of LR-CA-ATK.

7 EMPIRICAL EVALUATION
We separate our evaluation into three parts. The first part compares

P◦P with state-of-the-art PUFs including CPUF composed using

ARB-PUFs using an evolutionary strategy (ES) attack [13]. Using

insights from the first part, we proceed to the second part. The sec-

ond part shows that LR-CA-ATK successfully models CPUF, but it is

unable to model P◦P with various mapping functions. Using these

results, we provide insights into properties that make a mapping

function resilient to LR-CA-ATK. We accomplish this by carefully

selecting a few different mapping functions, and comparing them.

The third part evaluates statistical performance metrics of P◦P in-

cluding training times for CA-ATK and LR-CA-ATK on CPUF. We

also make some observations on the incurred hardware.

7.1 Experimental Setup
We perform our empirical evaluation using a simulation frame-

work built on Tensorflow [6]. Our simulation framework is publicly

available for download [15]. For LR, we implement RProp [12], and

for ES, we use the open-source implementation provided by Py-

Brain [11]. We use the meta-parameters for ES from [14] that have

resulted in successful attacks on a variety of PUF architectures.

Without loss of generality, our results use PUF instances with an

18-bit challenge. The 18-bit challenge allows us to explore differ-

ent mapping functions while the attacks can still be practically

conducted.

7.2 Results
We begin by showing that CPUF is vulnerable to LR-CA-ATK, but

P◦P remains resilient. This establishes that P◦P with varying map-

ping functions results in a strengthened architecture with respect

to LR-CA-ATK. We use this result to discover properties of P◦P that

contribute to its resilience. In particular, we investigate varying the

input size of the Layer 1 PUFs, and the effect of mapping functions

on the amount of sharing across Layer 1 PUFs.

7.2.1 Comparison against state-of-the-art PUF architectures.
We use the notation described in Table 1 to refer to PUFs,

and their configurations. We compare four P◦P configura-

tions: [i = 64,m = 2, r = 1, s = 1], [i = 64,m = 4, r = 1, s = 3],

[i = 64,m = 2, r = 2, s = 1] and [i = 64,m = 4, r = 2, s = 3]

against two CPUF architectures CPUF(64, 2) and CPUF(64, 4),

FF-PUF(64, 6), MPUF(64, 1), XOR-PUF(64, 2), ARB-PUF, LWS-

PUF(64, 2) as shown in Figure 3a. We use ES to attack the

aforementioned PUFs as ES only requires a parametric model. For

all the PUFs in Figure 3a, the training set and test set include 50,000

and 10,000 randomly generated CRPs, respectively. We observe

that [i = 64,m = 2, r = 1, s = 1], [i = 64,m = 4, r = 1, s = 3],

[i = 64,m = 2, r = 2, s = 1] and [i = 64,m = 4, r = 2, s = 3] sus-

tain a prediction accuracy of 60.48%, 55.87%, 61.57% and 57.70%

even after performing 2 × 10
6
evaluations. Other PUFs have the

following prediction accuracy: FF-PUF with 6 loops has 97.95%,

XOR-PUF has 97.6%, LWS-PUF has 97.47%, ARB-PUF has 99.14%

and MPUF has 99.3%. Note that all alternative PUF architectures

exhibit an increase in prediction accuracy to more than 97%. This

shows that a larger effort is required to attack P◦P and CPUF than

the alternatives with ES. For instances of P◦P , the architecture

with the same number of partitions, the ones with more Layer

1 PUF stages show lower prediction accuracy. The difference is

within 5%. For P◦P instances with the same Layer 1 PUF stages,

the ones with fewer partition numbers show lower prediction

accuracy. The difference is within 2%. These experiments confirm

that P◦P provides additional resistance to ML modeling attacks

with ES when compared against other PUFs.

7.2.2 Comparing Resilience of CPUF against P◦P using LR-CA-
ATK. Figure 3b shows the prediction accuracy of LR-CA-ATK when

Table 1: The notation of different PUF architectures.

Notation Architecture

FF-PUF(n, l ) n-bit FF-PUF with l loops
XOR-PUF(n, c) n-bit XOR-PUF with c chains

LWS-PUF(n, c) n-bit LWS-PUF with c chains

MPUF(n) n-bit MPUF.

ARB-PUF(n) n-bit ARB-PUF.
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applied to CPUF and P◦P with a varying number of CRPs. The

prediction accuracy is a metric to describe a PUF’s resistance to

modeling attacks. A high prediction accuracy signifies less effort is

required to model the PUF compared to one with lower prediction

accuracy. Recall, there are two phases in LR-CA-ATK. The exper-

iment in Figure 3b varies the number of CRPs used in Phase 2 of

LR-CA-ATK. When we evaluate the model, we exclude the CRPs

used in Phase 1 and Phase 2. The reason for this is that any CRP

used for training the model is stored by the attacker since the PUF

is actually exercised. We consider a PUF to be modeled when the

prediction accuracy is around 95%. Figure 3b shows that CPUF is

modeled with more than 95% prediction accuracy when the number

of the training CRPs is 2
7
. However, 2

13
training CRPs, LR-CA-

ATK cannot model our proposed architectures with 95% prediction

accuracy. Even if we use half of the total CRP space, our results

show that we cannot model P◦P with more than 95% prediction

accuracy. Since increasing the number of training CRPs does not

help us model P◦P , we choose an in-between value of 2
13

as the

number of training CRPs in Phase 2 for the remaining experiments

in Section 7.2.3.

7.2.3 Evaluating properties of mapping functions. We evaluate two

properties of mapping functions: 1) the resulting partition size, and

2) the number of partitions from mapping functions. We assess

the security with the normalized prediction accuracy, which is the

prediction accuracy divided by the number of CRPs used in Phase 1

and Phase 2. This metric measures the prediction accuracy achieved

per CRP used. For example, a prediction accuracy of 60% with 2
13

training CRPs in Phase 2 and 1024 CRPs in Phase 1 results in a

normalized prediction accuracy of 6.5 × 10
−5
. A PUF with a higher

normalized prediction accuracy means the CRP utilization is high

rendering the PUF less secure.

Partition size as a result ofmapping functions.We investigate

the effect of partition size resulting from the mapping function. In

Figure 4a, we evaluate a class of mapping functions, which parti-

tion Layer 1 PUFs into two partitions ([i = 18,m =m, r = 2, s = 2]).

Here, the partition sizes are not necessarily the same. The lowest

normalized prediction accuracy occurs when the size of the first

partition is small or large compared to the other one. The normal-

ized prediction accuracy peaks at the point where the partition

sizes are equal and such a mapping function is less desirable as

it offers reduced strength. This is because, if one of the partitions

induced by the mapping function has a large size, the attacker must

enumerate the larger partition in Phase 1 of the attack. Thus, a

mapping function where a partition for Layer 1 PUFs has a large

size is beneficial.

Number of partitions as a result of mapping functions. We

investigate the effect of number of partitions resulting from the

mapping function. We select mapping functions that divide Layer 1

PUFs into equally sized groups. Figure 4b shows that as the number

of partitions increase, the normalized prediction accuracy increases

and an attacker can model the PUF effectively. This means that a

mapping function that lowers the number of partitions of Layer 1

PUFs is better.

Suggestions for composition.Our study reveals that a goodmap-

ping function has the following. 1) A large partition size such that an

attacker must enumerate the larger partition. 2) A small number of

partitions such that an attacker can achieve a lower normalized pre-

diction accuracy. Using these as guides, we select the configurations

of 64-bit P◦P . LR-CA-ATK cannot model these configurations due

to the large CRP space. Hence, we use ES to show their resilience

to the attack as presented in section 7.2.1.

Table 2: LR-CA-ATK and CA-ATK on CPUF. Prediction rates
and the training time are averaged over 5 trials.

CPUF Types Pred. Acc.

LR-CA-

ATK

Pred. Acc.

CA-ATK

Train. Time

LR-CA-

ATK

Train.

Time

CA-ATK

CPUF(20, 4) 99.37% 99.92% 31.38s 162.91s

CPUF(64, 4) 99.62% - 33.94s -

7.2.4 Training time versus accuracy. Table 2 compares the training

time and accuracy of LR-CA-ATK against CA-ATK. Note that it is

impractical to apply CA-ATK to CPUF(64, 4) as its Phase 2 requires

the enumeration over a space of 2
64

binary strings. The result clearly

shows that LR-CA-ATK succeeds in modeling both CPUFs, but CA-

ATK fails to complete for CPUF(64, 4). In addition, LR-CA-ATK only

takes 20% of the time CA-ATK takes for CPUF(20, 4). Table 3 shows

the training time and the best achieved prediction rate for 50,000

CRPs. We observe that [i = 64,m = 2, r = 1, s = 1] has a higher

prediction accuracy by ∼4.6% over [i = 64,m = 4, r = 1, s = 3], but

the training time for [i = 64,m = 2, r = 1, s = 1] is larger due to the

fact that the model with 4-stage Layer 1 PUFs has higher complexity.

This result suggests that [i = 64,m = 2, r = 1, s = 1] provides just

as much resilience as [i = 64,m = 4, r = 1, s = 3]. Also, both P◦P
configurations outperform FF-PUFs in terms of their prediction

accuracy.

Table 3: Prediction accuracy for the best of 40 trials for P◦P
and other PUFs. The training time is the averaged.

Architecture Pred. Acc.

Best Run

Training

Time

[i = 64, m = 2, r = 1, s = 1] 60.48% 1:57 hrs

[i = 64, m = 4, r = 1, s = 3] 55.87% 2:29 hrs

[i = 64, m = 2, r = 2, s = 1] 61.57% 1:53 hrs

[i = 64, m = 4, r = 2, s = 3] 57.70% 2:31 hrs

CPUF(64, 2) 66.86% 1:35 hrs

CPUF(64, 4) 58.16% 1:55 hrs

FF-PUF(64, 6) 97.95% 5:59 hrs

XOR-PUF(64, 2) 97.60% 0:20 hrs

LWS-PUF(64, 2) 97.47% 0:21 hrs

MPUF(64) 99.30% 0:12 hrs

ARB-PUF(64) 99.14% 0:31 hrs

7.3 Performance Metrics
Table 4 presents the uniformity and uniqueness performance met-

rics. Our results show that P◦P with the differentmapping functions

offer good uniqueness traits. However, for P◦Ps with r = 2, the

uniformity is biased. Note that we do not include the effects of

noise, bias, and reliability of the construction in this work.
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Figure 4: Normalized prediction accuracy given different properties of mapping functions.

Table 4: Uniqueness and uniformity for P◦P .

PUF Architectures Uniqueness Uniformity

[i = 64, m = 4, r = 1, s = 3] 50.4% 47.6%

[i = 64, m = 4, r = 2, s = 3] 50.5% 61.7%

[i = 64, m = 2, r = 1, s = 1] 49.5% 49.5%

[i = 64, m = 2, r = 2, s = 1] 50.4% 63.6%

7.4 Hardware Cost
In Table 5, we compare the hardware cost of P◦P and CPUF.

[i = 64,m = 2, r = 1, s = 1] and [i = 64,m = 4, r = 1, s = 3]

are the P◦P instances that take 64-bit challenge.

[i = 64,m = 4, r = 1, s = 3] is slightly better than

[i = 64,m = 2, r = 1, s = 1] according to our evaluations with the

ES attack. This enhanced security comes at the price of 66.7% larger

number of stages. [i = 64,m = 4, r = 1, s = 3] and CPUF(64, 4)

have the same hardware cost and CPUF(64, 2) can take 128-bit

challenge. However, we already showed that CPUF(64, 4) can be

modeled using LR-CA-ATK with far fewer CRPs than the 128-bit

challenge space.

Table 5: The hardware cost of different PUF compositions.

PUF Architectures ARB-PUF(2) ARB-PUF(4) ARB-PUF(64)

Number

of Stages

[i = 64,m = 2, r = 1, s = 1] 64 − 1 192

[i = 64,m = 4, r = 1, s = 3] − 64 1 320

CPUF(64, 2) 64 − 1 192

CPUF(64, 4) − 64 1 320

8 CONCLUSION
We revisited the idea of strengthening PUFs by constructing PUFs

that are compositions of other PUFs. We proposed a general model

for composition, and considered a particular family in that model

that admits new kinds of compositions, and also captures prior

constructions. We established analytically that even within this

restricted family of constructions, there can exist PUFs whose

strength, asymptotically, is the maximum possible for a particular

input-size. We then revisited state-of-the-art attacks on PUFs, and

proposed an enhancement to the prior attack on such compositions.

Via our empirical assessments, we confirmed that constructing

PUFs by composition is indeed a promising approach to realizing

strong PUFs. Our general model, and the manner in which PUFs

are realized in practice, suggest a rich area of future work.
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