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Abstract—ZeroCost-LLC (ZCLLC) is a shared inclusive last-
level cache (LLC) architecture for predictable multicore plat-
forms that does not incur additional cost to the worst-case latency
(WCL) of memory requests when compared to the memory
hierarchy without an LLC. Thus, the WCL remains the same
as without an LLC in the memory hierarchy, but with the
performance benefits of having an LLC, in the form of additional
caching capacity. ZCLLC achieves this by eliminating all cache
line invalidations, and proactively updating the main memory
with cache lines to preserve an important vacancy invariant.
Furthermore, ZCLLC does not impose any constraints on the
way the LLC is used unlike other approaches such as LLC
partitioning. Our analysis reveals that the WCL is 55.6%, 68.0%,
and 80.2% lower, and the performance is 2.4%, 7.2%, and 25.6%
better than the state-of-the-art LLC partition sharing techniques
for 2, 4, and 8 cores, respectively.

I. INTRODUCTION

Multi-cores are deployed in real-time domains such as
advanced driver assistance systems (ADAS), avionics, and
safety-critical robotics [1], [2]. Shared hardware components
in the multi-core architecture such as interconnects and shared
caches are sources of timing interference that affect the timing
predictability of multi-core platforms. This is because the
timing behavior of one core’s access to a shared hardware
resource affects the timing behavior of another core’s access to
the shared hardware resource [3], [4]. Such timing interference
must be accounted for in worst-case execution time (WCET)
analyses. This work focuses on addressing the timing interfer-
ence arising from shared inclusive last-level caches (LLCs).

A key contributor to the timing interference in a shared
inclusive LLC occurs when a core’s memory request to a
cache line misses in both its private cache and the shared LLC.
If there is no space in the LLC to hold the requested cache
line, then the LLC must make space by removing an existing
cache line in the LLC. Depending on whether the cache line
chosen for removal is present in the cores’ private caches,
this cache line removal from the LLC triggers additional
invalidations of the cache line in the cores’ private caches that
have the cache line. We refer to this chain of invalidations as
back-invalidations [5]. These back invalidations are a major
contributor to the worst-case latency (WCL) of a memory
request [6], [7].

One approach to reduce such back-invalidations is through
LLC partitioning where each core has exclusive access to their
allocated LLC partitions [8], [9]. However, a key downside of
LLC partitioning is that they restrict cores’ access to the full

LLC resulting in missed data caching opportunities and as a re-
sult, impose some average-case performance penalty [8], [10].
Furthermore, LLC partitioning does not eliminate all back-
invalidations. Recent work [7] addressed this limitation of LLC
partitioning by proposing a technique wherein cores can share
LLC partitions in a predictable manner. Their work showed
that sharing LLC partitions between cores increases the oc-
currences of back-invalidations, and these back-invalidations
contribute to the WCL. Further, their work showed that the
WCL for a multi-core platform with shared LLC with no
partitioning constraints is orders of magnitude larger than that
with no LLC1. While allowing cores to share LLC partitions is
a welcomed step towards higher average-case performance, its
high WCL questions its applicability in real-time platforms.

In this work, we ask and answer the following question:
Can we design a shared inclusive LLC with the following
features: (1) all cores can access the full LLC (no partitioning
constraints), and (2) the WCL of a core’s request is the same
as that without an LLC? Such an LLC architecture is appealing
for real-time multi-core platforms as it offers the performance
benefits of using an LLC, but it does not incur additional
latency to the WCL caused by back-invalidations. In other
words, an LLC can be added to a multi-core platform at no
cost to the WCL.

We answer this question in the affirmative, and present
a novel LLC architecture called ZeroCost-LLC (ZCLLC).
ZCLLC uses a recent work called zero-invalidation-victim
(ZIV) [11] to completely eliminate all back-invalidations.
ZCLLC borrows the following key insight from ZIV: elim-
inating back-invalidations entails finding a location in the
LLC to insert the requested cache line (that causes the back-
invalidation) that is either vacant or has a cache line that
is not present in any of the cores’ private caches. Evicting
such a cache line does not trigger a back-invalidation. Despite
ZIV addressing a central issue related to back-invalidations,
we discovered that directly employing ZIV with a TDM
arbiter [12] resulted in an unbounded WCL. The reason for
this was that the location found by ZIV, despite not being
cached by any cores’ private caches, could contain dirty data
that had to be written back to the main memory from the
LLC. This delayed the LLC from fetching the requested
cache line from the main memory during which other cores’

1Note that back-invalidations happen under certain situations based on the
state of the LLC and private caches. However, the worst-case scenario for a
core’s memory request is when it triggers a back-invalidation in the LLC.
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requests could intercept the soon-to-be-vacant cache entry
for their own requests. This forced the original request to
retry for a vacant cache entry indefinitely. We noticed that
the work in [7] recognized a similar situation and proposed
an ordering constraint on requests attempting to occupy the
same vacant cache line entry called ROC, which bounded
the WCL. A solution that combines ZIV and ROC bounds
the WCL. The resulting bound, however, is quadratic with
respect to the number of cores because the analysis still has to
account for the dirty cache line to be written back to the main
memory. Hence, a key contribution of our work with ZCLLC
is ensuring that we always have a clean entry by enforcing
a runtime invariant, vacancy invariant. This enforcement is
accomplished by dynamically writing back dirty cache line
entries from the LLC to the main memory. Our WCL analysis
shows that ZCLLC does not introduce any additional cost to
the worst-case latency of a memory request.

The main contributions of this work are:
• We analyze the impact of back-invalidations on the WCL

and describe the ingredients necessary to eliminate back-
invalidations.

• We describe a novel LLC architecture, ZCLLC, that
recognizes the need to combine ZIV with ROC to elim-
inate back-invalidations while bounding the WCL, and
enforces a runtime invariant to ensure the existence of
clean entries in the LLC to further lower the cost on the
per-request WCL.

• We present a WCL analysis of ZCLLC and show that
ZCLLC does not introduce any additional cost to the
WCL of a memory request.

• We evaluate ZCLLC in a detailed micro-architectural
simulator and validate the worst-case bounds derived
from our latency analysis. Our evaluation shows that
ZCLLC offers 3.7%, 8.0%, and 25.0% better performance
compared to the state-of-the-art LLC partition sharing
techniques for 2, 4, and 8 cores setups, respectively.

II. SYSTEM MODEL

A. Baseline Memory Hierarchy

Figure 1a shows our baseline system with N cores and a
two-level inclusive cache hierarchy. Each core has a private L1
instruction cache (L1I) and a private L1 data cache (L1D), and
a private unified set-associative L2 cache (L2). Each core’s L1
caches connect to its L2 cache. All caches employ the least-
recently-used (LRU) replacement policy. We further assume
that there is at most one outstanding memory request per core.
The cores’ L2 caches communicate with the main memory
via two shared buses: one for commands and one for data.
We use a work-conserving time-division multiplexing (TDM)
arbitration [13], [14] scheme that allocates one slot for each
core to access the main memory. A TDM slot is long enough
to complete one data transfer between the private L2 cache
and the main memory. Such a deployment closely resembles
platforms in [12], [15]–[17] without a shared LLC. Note that,
our approach can be extended to other TDM schedules.

…

L2Controller
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Controller

(a) Without LLC.

…
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Fig. 1: System model.

The main memory controller accepts requests from the
command bus and processes them in the order they are
received. When a memory request misses in the L2, L2’s
cache controller issues a request to fetch the data from the
main memory. The main memory sends the requested data on
the shared data bus. For brevity, we refer to the core issuing
commands on the bus or receiving responses to be analogous
to its L2 cache controller issuing commands and receiving
responses. Caches transfer data in the granularity of a cache
line, which we assume to be 64-byte wide. We use cache line
A to represent the cache line indexed by address A.

B. Memory Hierarchy with LLC

In Figure 1b, we augment the N -core baseline memory
hierarchy with a shared, set-associative, write-back and write-
allocate LLC. The cache hierarchy with the LLC is inclusive.
This means that if a cache line is privately cached in L1 or L2,
then this cache line is guaranteed to be cached in the LLC. If
a cache line is not in the LLC then it is neither in the L1 nor
L2. The LLC selects the LRU cache line (victim cache line) to
replace on a conflict miss. The private L2 caches communicate
with the shared LLC via the shared command and data buses.
The LLC handles requests from the command bus in the order
they are received and interacts with the main memory when
a request misses in the LLC. We assume the capacity of the
LLC to be greater than or equal to the aggregated capacity of
all private caches [11]. An important component in our LLC
is the tag array. Our tag array holds relocation information
in addition to coherence-related states, and it is used for the
same purpose as ZIV’s sparse directory. For ZCLLC, the tag
array is set-associative and mimics the organization of the
private caches. This is similar to [18]. We refer the reader
to ZIV’s implementation for further details on the tag array’s
design [11], [19].
Core memory operations. A core issues one of the following
memory operations: Read, Write, or WriteBack. Read and
Write correspond to loads and stores by the core. If a Read or
Write hits in the private caches, the requested data is returned
to the core. Otherwise, the Read or Write is forwarded to
the LLC. The core issues WriteBack to relinquish its private
copy of a cache line either on a capacity miss or in response
to another core’s request. Note that in our approach, the
WriteBack of a clean cache line must notify the LLC.
LLC Read/Write memory operations. We illustrate LLC
Read and Write memory operations under our system model
with an example, through which we introduce a well-known
issue, back-invalidation, that may impact the WCL of memory
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requests when deploying an LLC. When the LLC receives a
Read or Write request from a core, it performs a FFLM (Fetch
From LLC or Main Memory) to fetch the requested cache
line, and send it to the requesting core’s L2 cache controller.
Consider the core under analysis, cua, issues a request to
address A, denoted as Read(A), or Write(A). We denote the
cache set that A maps to in the LLC as sL(A). Hence, cua’s
request to cache line A maps to a cache set, sL(A), in the
LLC. If A is cached in sL(A), then cua’s request is a hit,
and the data of A is returned to cua. Otherwise, it is a miss
and the LLC must fetch A from the main memory. Before
fetching A, the LLC must ensure a vacant entry in sL(A)
for A. If sL(A) has no vacant entries, then the LLC selects
a victim line in sL(A), l, and evicts l to make space for A.
However, victim l may be privately cached by another core.
To ensure the inclusion property of the memory hierarchy, the
LLC coordinates the eviction of l from all cores that have
a private copy before invalidating the victim line in the LLC.
We categorize back-invalidations into the following two types.
(1) Given a BI from core ci to core cj , when ci ̸= cj , the
back-invalidation is called cross back-invalidation (CBI). (2)
Otherwise when ci = cj , the back-invalidation is called self
back-invalidation (SBI).

Definition 1 defines the conditions under which a back-
invalidation happens.

Definition 1. A back-invalidation (BI) from core ci to core cj
happens when (1) ci’s request to a cache line A misses in the
private caches and the LLC, (2) the cache set corresponding
to ci’s requested line in the LLC, sL(A), is full, and (3) the
victim selected by LLC for eviction is privately cached in cj’s
private cache.

Continuing with the example, the victim line l may be
dirty (the data is modified when compared to the copy in the
main memory); thus, it must be updated in the main memory.
The LLC updates the main memory with the victim before
servicing the request for A. For clean victims, the LLC only
marks the entry in the LLC as invalid (no updates to the
memory are generated).
LLC WriteBack memory operations. A WriteBack request
for cache line A is denoted as WriteBack(A). When the
WriteBack is sent to the LLC, the LLC performs a WTLM
(Write To LLC or Main Memory) that writes back the cache
line received from the core to the LLC, and to the main
memory. The WriteBack is the result of an SBI or a CBI.

III. BACKGROUND

ZIV [11] presents a technique to eliminate back-
invalidations in inclusive caches in general purpose systems.
ZIV assumes that the capacity of the shared LLC is greater
than the aggregated capacity of all private caches as stated in
the system model. This assumption is essential for an LLC to
be inclusive because the LLC must have enough capacity to
guarantee that every privately cached line caches is also cached
in the shared LLC. Thus, there always exist cache line entries
in the LLC that are not privately cached by any private caches
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Fig. 2: (a) ZIV operation in LLC to avoid back-invalidations.
(b) ZIV operation in LLC on a hit to a relocated cache line.

or vacant, which we refer to as relocation entries (REs). Note
that an eviction of an RE does not incur any back-invalidation.
The key insight in ZIV is that when the LLC selects a victim
that is also privately cached, the LLC relocates the victim to
an RE that is guaranteed to exist; thus, eliminating all back-
invalidations. We use a register nextRS to track the location
of an RE, and amend each LLC set with one additional bit,
HasRE, to indicate the existence of at least one RE in that set.

We elaborate ZIV’s operation using the example in Fig-
ure 2a. A core, cua, requests for A and ZIV checks the tag
array. There is no tag entry with A ( 1 ); thus, the request is
a miss in the LLC. Note that the red markings indicate the
state after the handling of the miss for A. Each entry in the
tag array in ZIV tracks the tag, sharers, and a location tuple of
set index and way index that points to the cache line the entry
is monitoring in the data array. For example, cache line B is
owned by core c4, and its data is stored in set 0 and way 0 in
the data array. By changing the location tuple, ZIV allows a
cache line to be relocated. The LLC queries the data array’s
set 0 (sL(A)) and observes that there are no vacant entries
since cache lines B and D occupy both ways. We assume
that both lines are privately cached as well. ZIV selects B as
the victim in sL(A). 2 The LLC queries nextRS register for
the location of a RE for B’s target location. Suppose it points
to set 2. ZIV uses an additional bit for each set in the data
array, HasRE, to indicate a cache set with an RE. For example,
set 0 does not contain an RE; thus, HasRE is 0. nextRS stores
the set index of a cache set with an RE. Once a relocation
happens, nextRS is updated to another cache set with RE in
round-robin order, which is set 1. 3 Then, the LLC relocates
B to the target location in set 2, and updates the location tuple
of B’s tag array entry to set 2, way 1. Future requests to the
LLC that access B use the set and way indices in the tag array
to correctly locate the data array entry. 4 Finally, the LLC
fetches A from the main memory and use the relocated entry
to store A. The state of the LLC after relocating cache line B
is shown in Figure 2b.

In ZIV, the access to a non-relocated cache line, such as A,
follows the conventional data path, where the tag array and
data array are queried in parallel, revealing that the access
hits in the LLC. The access to a relocated cache line, such
as B, involves an extra data array query, as we show in
Figure 2b. Similar to access to a non-relocated cache line,
the access to cache line B starts by querying the tag array
and data array in parallel ( 1 ). The query to the tag array is
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a hit while the query to the data array is a miss. Recall from
Figure 2a that cache line A and cache line B map to the same
set (sL(A)), and cache line B is relocated to set 2; hence,
the miss in the data array. This indicates that cache line B
was relocated in the data array. This means the LLC uses the
location tuple from the array query to access the data array at
set 2, way 1 ( 2 ). A second query to the data array will
successfully retrieve the data ( 3 ). This second data array
query lengthens the critical path to access a relocated cache
line compared to non-relocated cache lines. However, ZIV [11]
noted this to incur an additional latency of 3 cycles for extreme
configurations such as a system with 768KB aggregated L2
capacity and a 1MB LLC, where the aggregated L2 capacity
is close to the LLC capacity.This is negligible compared to
the WCL, which is dominated by the main memory access.
To avoid the large overhead of combinational logic for deter-
mining nextRS, ZIV [11] employs a bit-masking technique to
determine nextRS such that it is practical to compute nextRS.
Specifically, when there are multiple cache sets with REs
available, the nextRS is updated to the cache set according
to round-robin. ZIV reported that it took 6% of a 1MB LLC
storage for supporting cache line relocation. The storage scales
linearly with the LLC capacity. We use the same technique
as [11] to enable cache line relocation and to remove back-
invalidations.

IV. THE IMPACT ON WCL WHEN USING A SHARED LLC

Augmenting the memory hierarchy with a shared LLC for
predictable multicore systems must be done carefully. This
is because such a change in the memory hierarchy requires
WCL analyses techniques to include the latency of accessing
the LLC [7], [20], [21]. In this section, we show an alternative
approach that incorporates a shared LLC with no partitioning
constraints that has no impact on the WCL.

In this section, we use the asymptotic worst-case latency
(AWCL) bound of a memory request [22] to present our
insights and observations regarding state-of-the-art works on
predictable LLC architectures and build to our solution. AWCL
is the WCL asymptotically in terms of the number of cores
and is a succinct formulation to understand how the WCL of
a memory request under a certain mechanism scales with the
number of cores. In Section VII, we derive the WCL of a
memory request under our proposed approach.

A. Expository Setup

We begin our exposition with the model in Figure 1a that
has no LLC. Then, we explore the effect of adding an LLC
into the memory hierarchy resulting in Figure 1b.
Setup without LLC as in Figure 1a. Simply for illustration,
suppose we restrict the cores in Figure 1a to only make ac-
cesses to distinct cache lines. This disallows accesses to shared
data. With this setup, every memory request can complete
within a slot. This is because the length of the slot includes
the latency for transferring the data between the private caches
and the main memory. Hence, the WCL for a memory request
occurs when a memory request just misses the start of its TDM

slot, and must wait for its next slot to perform the access. As
a result, a core must wait for a TDM period in the worst-case
before it successfully issues its request. Thus, the memory
request suffers the worst-case arbitration latency of O(N) slots
resulting in an AWCL that is linear to the number of cores (N ).
There are several recent works [22], [23] that have a similar
setup as this one, but they also allow accesses to shared data
with an AWCL of O(N). ZCLLC applies to those works as
well.

Setup with LLC as in Figure 1b. When we add an inclusive
shared LLC to the setup, we end up with the system model
shown in Figure 1b. This addition requires us to investigate
whether the WCL of a memory request has changed. Note
that accessing the LLC itself does not increase the latency
compared to accessing the main memory. This is because the
access to the LLC can happen in parallel with the access to the
shared memory once the LLC receives a request. Inevitably,
the WCL analysis must account for interference caused by
back-invalidations.

A recent work [7] showed that adding a shared inclusive
LLC and enforcing an ordering constraint on which requests
occupy vacant cache line entries yields an AWCL of O(N3).
The O(N3) occurs because there are O(N2) BIs in the worst-
case that cause interference on a request. We denote this
ordering constraint as request ordering constraint (ROC). ROC
prevents a younger request from occupying a vacant entry
in the LLC that was released for an older request. The key
intuition behind the cubic bound with ROC is that in the worst-
case, there are O(N2) SBI and CBI that can be pending as
a result of the ROC for a request, and each back-invalidation
requires O(N) slots to complete, which results in O(N3).

We highlight that by simply adding a shared inclusive LLC,
the AWCL that was linear without the LLC ends up being
cubic with the LLC. We find this to be a prohibitive cost to
incur for adding a shared LLC. We acknowledge that there
are other approaches that circumvent this cost. For example, a
well practiced approach, LLC cache partitioning [8], offers an
O(N) AWCL. However, this comes with caveats that disallow
data sharing, and require kernel and OS changes [9], [24].
More importantly, all the difficulties related to LLC partition-
ing such as partition underutilization, and poor scalability to
larger number of cores continue to persist. Our hope in this
work is to present an approach where we can incorporate an
inclusive shared LLC without incurring additional overhead to
the WCL, and correspondingly to the AWCL. The significance
of this approach is that WCL analyses do not need to account
for interference as a result of adding an LLC. Hence, the
original WCL bounds as computed without the LLC hold.

B. Observations and Insights

Question 1. Given that back-invalidations are the main
sources of interference when introducing an LLC, can we
eliminate all back-invalidations?

As explained in Section III, the relocation strategy employed
in ZIV can eliminate back-invalidations for multicore systems.
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Fig. 3: Different approaches of incorporating ZIV in an LLC: (a) employing ZIV by itself results in unbounded WCL (b) ZIV
with ROC (c) Lower WCL with memory update.

However, adopting ZIV for predictable multicore systems must
be carefully examined for its impact on the WCL.

Unbounded WCL when using ZIV by itself. We discovered
that employing ZIV by itself with a TDM arbitration scheme
established in prior works [12] results in an unbounded WCL.
The TDM arbitration scheme enforces that one TDM slot
is large enough to conduct one data transfer between the
private cache and the main memory. As a result, the LLC
may fulfill a request across multiple TDM slots. Such a
TDM arbitration scheme allows the LLC to interleave and
handle requests non-atomically, yielding improved average-
case performance. However, the TDM arbitration scheme only
specifies the order in which the cores access the LLC, and
does not specify the order in which the LLC handles the
requests. This separation, if left under-specified, can result in
unbounded WCL. In Figure 3a, consider that core c1 issues
a request to A in slot 1 that maps to sL(A), which has one
cache line entry l1 in the LLC. The LLC caches three cache
lines B, D, and E, where D is privately cached while B
and E are dirty lines, but not privately by any core. Since,
l1 has valid data D that is privately cached by c3, sL(A) has
no vacant entry. Since sL(A) has only one cache line, l1 is
selected as the victim line, and it must be relocated. Suppose
that the target location selected by ZIV is l2, which has a
dirty entry (denoted by !). Before relocating l1, the LLC must
update the memory with contents of l2. Recall that the length
of a slot only permits one access to the main memory; hence,
this update to memory consumes c1’s entire slot 1 . At the
end of slot 1 , l1 is vacant. However, in slot 2 , c2 makes
a request to C that also maps to sL(A), and occupies this
recently vacated entry l1. In slot 3 , c3 writes back D in 3
for its next request. Notice that c2 usurped the vacant entry l1
that was freed for c1’s request to A. Hence, in c1’s next slot 4 ,
c1 has not completed its request to A; thus, the LLC attempts
to complete the request. However, sL(A) still has no vacant
entries causing the above steps to repeat. This pattern can
continue indefinitely resulting in the WCL being unbounded.
We observe that the key reason for the unbounded scenario
is the same for which ROC was proposed as a remedy [7].
Therefore, we combine the enforcement of ROC with ZIV,
and examine its effect on the WCL.

ZIV with ROC. Figure 3b shows an illustration where we
combine ZIV with ROC (ZIV+ROC). We observe that a WCL
bound exists, and the AWCL is O(N2). We use the same
memory requests in Figure 3a that resulted in the unbounded
WCL in Figure 3b with ZIV+ROC. In slot 1 , c1 issues a
request for A. The victim selected is l1. ZIV relocates l1 to l2
to avoid back-invalidation. Since l2 is dirty, the LLC updates
the main memory with B. These steps are exactly the same
as in Figure 3a. In slot 2 , c2 issues a request to C. Unlike
before, ROC prevents c2 from occupying l1 even if it is vacant.
This is because l1 was freed as a result of c1’s request for A.
In slot 3 , c3 updates the memory with D to make space for
its next request. In slot 4 , the LLC fetches A from the main
memory, fills l1 in the LLC, and sends A to c1. Similarly, the
LLC attempts to fulfill c2’s request in 5 and relocates l1 to
l2, updating the dirty cache line D in the memory. Finally, c2
obtains the response and completes its request in 8 .

Although ZIV eliminates back-invalidations, ROC can delay
a request. This occurs when the target location is dirty, and
must first be updated in the main memory. This consumes the
entire slot as shown in slot 1 in Figure 3b. While waiting for
the core’s next slot, other cores can issue requests, and ROC
queues them. Thus, in the worst-case O(N) requests to the
same cache set such as the one in 2 in Figure 3b could be
queued, and each one may need to update the main memory.
This yields O(N2) AWCL. We do not provide the proof for
computing this AWCL due to space constraints.
Insights 1. We derive two insights when using ZIV+ROC. (1)
We have to assume the target location is dirty in the worst-case.
This means the target location must be updated in the main
memory before performing the relocation. (2) The AWCL is
O(N2). Therefore, using ZIV+ROC to add a shared LLC to the
setup without the LLC increases the AWCL by O(N) when
compared to the setup with no LLC.
Question 2. When relocating a victim line in ZIV+ROC, what
happens if we select a target location that is guaranteed to be
clean or vacant?
Suppose we devise an approach that guarantees that on a
relocation, there always exists a target location that is clean or
vacant. Then, an update to the main memory is not needed in
that slot. Consequently, the request that required the relocation
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TABLE I: Symbols and names used in proofs and analysis.

Symbol Explanation Symbol Explanation
SW Slot width T L2 capacity
M LLC capacity N Number of cores
ci, cua Core i, core under analysis sL(A) LLC set cache line A maps

to
Q Dirty lines cached in LLC

and not cached in any of
the private caches

J Clean lines cached in LLC
but not cached in any pri-
vate caches

WTLM Write to LLC or main
memory

FFLM Fetch from LLC or main
memory

could fetch the requested cache line in the same slot. Consider
the example in Figure 3c, which shows the same requests from
Figure 3b. The main difference is that l2 and l3 are clean
with respect to the main memory, labeled as l2 : − : B∗ and
l3 : − : E∗. Definition 2 formally defines such entries.

Definition 2. A clean relocation entry (CRE) is a cache entry
in the LLC that is a vacant entry or holds a clean cache line
that is not privately cached.

A CRE allows relocation of cache lines without triggering
an update to the main memory. c1’s request for A can use
the CRE l2 on relocation. This allows the LLC to use the
latency that was previously used for updating the dirty cache
line in the main memory to instead fetch data from the main
memory. Consequently, c1 can receive its response in the same
slot. Guaranteeing a CRE on a relocation results in an AWCL
that is O(N ).

Insights 2. Our main insight is that if we ensure the target
location on relocation is always a CRE, then we can complete
the request within that slot.

ZCLLC, uses ZIV+ROC and also ensures that a CRE is
available on a relocation. ZCLLC ensures that in the worst-
case, the number of CREs is always sufficient for the LLC
to complete requests from cores without incurring updates to
the main memory and back-invalidations. A key technique
in maintaining a sufficient number of CREs is that ZCLLC
performs memory update when a core voluntarily relinquishes
its copy of cached data in its private cache resulting in a CRE.
We explain these details in section V.

V. ZCLLC: SHARED LLC AT NO COST TO WCL

The key novelty in ZCLLC is in being able to incorporate
a shared inclusive LLC into the memory hierarchy without
any cost to the WCL. ZCLLC does this by eliminating back-
invalidations, and guarantees that no updates to the main
memory are necessary on a relocation. Hence, ZCLLC ensures
that there is always a CRE in the LLC when a relocation is
done. ZCLLC enforces the vacancy invariant on a replacement
(WriteBack) in the LLC. Guaranteeing the vacancy invariant
requires dynamically deciding whether to update the main
memory (UpdateMemory) or not. The main benefit is that
when the vacancy invariant is satisfied, a request is guaranteed
to finish within one slot. We explain how the vacancy invariant
plays a role in ensuring the existence of a CRE in this section.
Note that in our design, WriteBack of a clean cache line is

not silent, and must be handled by the LLC. We collect the
symbols used in this paper in Table I.

A. ZCLLC: Micro-architectural Extensions
ZCLLC reuses ZIV’s approach to relocate cache lines to a

new cache set and to access a relocated cache line. Hence,
ZCLLC has the same storage overhead as ZIV for supporting
cache relocation.
Counter. ZCLLC introduces a counter in the LLC to track the
number of dirty cache lines that are valid in the LLC, but not
cached in any private caches. Let Q denote the set of addresses
of cache lines in the LLC that are not privately cached and
dirty. ZCLLC tracks |Q|.
Tracking CRE. We extend ZIV to support the tracking of
CREs. Recall from Section III that ZIV tracks the cache set
that has REs by augmenting each LLC set with a HasRE
bit. ZCLLC reuses this bit to indicate that a cache set has
at least one CRE, enabling the use of ZIV’s hardware to
relocate cache lines to CREs. Following ZIV [11]’s approach
of tracking RE with a round-robin fashion, ZCLLC tracks
CRE by augmenting each cache set in the LLC with one bit
indicating whether there exists an entry that is clean and not
privately cached. This bit evaluates to 1 when such an entry
exists and 0 when there is no such an entry. For a w-way set-
associative LLC with n sets, this amounts to an n-bit vector.
Any set with a bit value of one contains a CRE and contains at
least one entry that can be used by ZCLLC for relocation. In
ZCLLC, we select the set that contains CREs in a round-robin
order to minimize hardware cost. On every request, only bit
positions corresponding to two sets are updated in the worst-
case: (1) the cache set of the original request, and (2) the
cache set of the relocation target. This incurs minimal cost in
maintaining the bit vector.

B. ZCLLC: Dynamic Memory Update Policy on Replacements
ZCLLC dynamically enables main memory updates on

replacements (WriteBack requests) from cores that relinquish
their copy of data from the L2 cache. Note that a main memory
update, or in short, a memory update, specifically means that
the LLC synchronizes the contents of a dirty cache line in
the LLC that is not privately cached by any core to the main
memory, creating a CRE. On receiving a WriteBack, the LLC
checks an invariant based on the counters to decide whether to
update the main memory’s copy of the addressed cache line
that is dirty in the LLC. We call this the vacancy invariant
(Definition 3). If this invariant is not satisfied, the LLC must
perform a memory update. This ensures that when a future
request results in a victim line that is privately cached, there
is always a CRE to relocate to without triggering an update
to the main memory.

Definition 3 (VINV). The vacancy invariant (VINV) is a
predicate given by the following inequality:

M − |Q| ⩾ N · T . (1)

M is the capacity of the LLC, and T is the capacity of each
of the private caches as shown in Table I. The left hand side
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Algorithm 1: ZCLLC
State : Q
Initialization: Q = ∅.

1 Loop
2 req ← ReceiveRequest();
3 ⟨type, addr, ci⟩ ← ExtractRequest(req);
4 if type = WriteBack then
5 // Write-back caused by replacement in L2;
6 WTLM(addr,Q);
7 else
8 // The request is a Write or Read;
9 if IsMiss(addr) and not

(HasVacantLine(sL(addr)) or HasCleanLine(sL(addr)))
then

10 victim← SelectVictim(sL(addr));
11 if victim ∈ Q then
12 target← SelectRelocationCRE();
13 Relocate(victim, target);
14 end
15 end
16 ZIVFFLM(req, ci,Q);
17 end
18 EndLoop

of Inequality (1) is the number of cache entries in the LLC
that is vacant, whose cache line is clean, or privately cached.
These cache lines can be used or evicted without requiring
an update to the main memory (UpdateMemory). The right
hand side of Inequality (1) is the total number of entries in
the private caches. When Inequality (1) holds, the LLC can
always find a target location to relocate to without having to
perform a UpdateMemory. Note that for an application that
only performs Read operations, Q is always empty because
there are no dirty cache lines, and VINV is trivially satisfied.

C. Implementing ZCLLC in the LLC Controller

The LLC controller implements ZCLLC. We present the key
implementation details in Algorithms 1 and 2. ZCLLC starts
by snooping a request req from the command bus (Line 2).
The controller extracts the type of the request (type), the
address of the requested cache line addr, and the core ci that
is issuing the request (Line 3). When the request type is a
Read or Write and if the request is a miss, ZCLLC checks
whether the cache set sL(addr) has a vacant or clean cache
line with HasVacantLine and HasCleanLine (Line 9). If there
is no vacant entry and there is no clean entry in sL(addr),
ZCLLC selects a victim line in the set and relocates the victim
to a CRE, and completes the request req (Lines 10 to 13).
Otherwise, the access is a hit in the LLC, or sL(addr) has a
vacant entry or clean entry. Then, ZCLLC invokes ZIVFFLM
to fetch the requested cache line from the LLC or the main
memory and send the data back to the requesting core ci
(Line 16). ZIVFFLM takes as input a request req, which is
a Read or a Write, and fulfills it, assuming that either the
request is a hit, or the request is a miss but there is a vacant
entry or a clean entry in the cache set. Such conditions allow
ZIVFFLM to fetch the data for the request without triggering
a back-invalidation. Note that VINV guarantees that there is
always a CRE in the LLC to relocate a privately cached victim
without incurring a back-invalidation or memory update.

Algorithm 2: WTLM
Input: addr, Q.

1 copy count← GetCachedCopies(addr);
2 if copy count = 1 then
3 Q ← Q∪ {addr};
4 end
5 if not VINVHoldTrue(Q) then
6 V ← SelectLine(Q);
7 UpdateMemory(V );
8 Q ← Q \ {V };
9 end
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Fig. 4: Illustrative example.

When the request is a WriteBack, the core is relinquishing
a copy of the cache line. ZCLLC invokes WTLM to handle
WriteBack and update main memory when necessary to create
a CRE (Line 6). Algorithm 2 describes WTLM. WTLM
accepts the request address addr, and the cache state Q as
input. At a high-level, when a core issues a WriteBack for a
cache line at address addr, this cache line can be (1) cached
in multiple private caches and hence the cache line is clean
and shared among multiple cores, or (2) cached only by the
core that issues the WriteBack and is potentially dirty. In (1),
WriteBack of the clean cache line does not alter Q; while
in (2), the WriteBack adds the dirty cache line to Q, which
may violate VINV as it is dependent on Q. Hence, when
a WriteBack happens, WTLM first checks whether addr is
cached by a single copy and modifies Q accordingly, and
if VINV is violated, WTLM performs UpdateMemory for a
cache line from Q to reduce the number of cache lines from
Q, maintaining the VINV. This is essential in ensuring that a
CRE is available whenever a relocation is required.

WTLM first checks the number of cores that cache a copy of
requested line addr with GetCachedCopies (Line 1). If there
is only one core that caches the copy, WTLM adds addr to Q
(Lines 2 to 4). Next, WTLM invokes VINVHoldTrue on Line 5
to decide whether a memory update is necessary to guarantee
VINV to provide enough CREs. When VINVHoldTrue(Q)
evaluates to False, meaning that the VINV is violated, there
are insufficient CREs and the LLC must perform a mem-
ory update. Internally, VINVHoldTrue checks whether the
Inequality (1) holds. Otherwise, there are sufficient CREs in
the LLC and no memory updates are required.
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D. Illustrative Example

We use Figure 4 to explain ZCLLC’s operation with a focus
on ZCLLC’s ability to enforce VINV.
Example setup. This example has three cores following the
TDM schedule of [c1, c2, c3]. Each private cache contains only
one cache line. Figure 4 shows the content of each private
cache in Prv$ row. We use an underscore ( ) to represent
a vacant entry. The LLC has four sets and each set contains
one cache line labeled as l1, l2, l3 and l4, respectively (M = 4
and T = 1). All private caches and the LLC start out not
caching any cache lines (Q = ∅). Without loss of generality,
all requests considered in this example map to l1.
Slots 1 to 3 . In slot 1 , c1 issues a request to A that completes
in the same slot because the vacant entry l1 is available for use.
In slot 2 , c2 issues a request to B, which maps to l1. Following
line 9 to 13 in Algorithm 1, ZCLLC relocates the contents of l1
to the vacant cache line l2; thus, no back-invalidation. Hence,
c2’s request completes in slot 2 with B occupying l1, and A
being relocated to l2. Similarly, c3 issues a request in slot 3
that relocates l1 to l3.
Slots 4 to 9 . In 4 , c1 wishes to request cache line D, but
c1’s private cache is full. Hence, c1 issues a WriteBack to
write back A to the LLC. At the start of 4 , on receiving the
WriteBack request (Line 4 in Algorithm 1), the LLC checks if
VINV holds if A in the LLC is not written to the main memory
(Line 5 in Algorithm 2). Suppose that A is not written to
the main memory, at the end of the slot, A will no longer
be privately cached. The VINV from Inequality (1) holds:
4 − 1 ≥ 3. Thus, the LLC does not need to write A back
to the main memory. In slot 5 , c2 issues a request to E,
requiring a replacement on B; thus, generating a WriteBack
to the LLC. Similarly, the LLC checks whether VINV holds if
B is not written to the main memory. If B is not written to the
main memory, at the end of 5 Q = {A,B}. In this situation,
VINV does not hold: 4− 2 ≥ 3. Hence, the LLC updates the
main memory with B selected by SelectLine (Lines 6-8 in
Algorithm 2). This is essential because if B is not updated in
the main memory, there will be 2 dirty cache lines, A and B
in the LLC leaving l4 as the only CRE. However, there are
2 vacant entries in the private caches of c1 and c2, allowing
them to make 2 requests. With B written back to the main
memory, VINV holds. In slot 6 , c3 performs a replacement
to make space for its memory request. Similar to 5 , the LLC
must write back C. Now, the LLC ends up with Q = {A}
that still needs to be written back to the main memory, and
{B,C} are clean with respect to the main memory. In slot
7 , c1 issues its request to D that maps to l1. The LLC can
safely use l1 in the LLC because its content was updated in the
memory in slot 6 . Then, the LLC fetches D from the main
memory and sends D to c1. c1’s request finishes within 7
without any back-invalidation. In 8 , c2’s requests E. ZCLLC
relocates D to l4, to vacate l1 and fetches E from the main
memory. Note that although ZCLLC could choose l3 since
it is clean, it chooses the vacant entry l4 to maximize LLC
utilization. In 9 , c3’s request to F maps to l1 and the LLC

relocates E to l3, which is a CRE with clean cache line. No
back-invalidation occurs.

When handling a WriteBack, the LLC ensures VINV holds
if it does not perform a memory update. If this invariant does
not hold, for example, when the LLC does not update the main
memory with B in slot 5 , the LLC will end up with only
two CREs, l1 and l4, for relocation at the end of slot 6 . Two
CREs for this example cannot guarantee back-invalidation-free
service for three requests in slots 7 , 8 and 9 .

E. Characterizing ZCLLC’s Write Policy
ZCLLC is, by definition [25], a write-back cache and not

a write-through cache, because a Write to the LLC always
updates content in the cache and not the main memory. Further,
the main memory only gets updated when ZCLLC performs
a WriteBack. To maintain VINV, we make ZCLLC behave
like a write-through cache. This occurs when a WriteBack
triggers an UpdateMemory to guarantee that a specific number
of CREs are always available as dictated by VINV. For
ZCLLC to act like a write-through cache, the LLC state must
be as follows: cache lines in the LLC are either privately
cached or not privately cached, but dirty. If there are enough
CREs as specified by VINV, a WriteBack does not trigger
any main memory updates, and ZCLLC acts the same as
a write-back LLC. It is noteworthy that ZCLLC will not
be stuck in the LLC state that forces write-through cache
behaviors. This is because Read requests from cores and their
corresponding WriteBack will eventually increase the number
of CREs even if VINV holds. In this work, we do not include
a quantitative comparison with write-through caches. This is
because prior works on predictable cache coherence [12], [22],
[23] assume write-back caches. Extending predictable cache
coherence protocols with write-through caches requires non-
trivial coherence protocol changes whose correctness needs
careful investigation, which is beyond the scope of this work.

VI. ZCLLC’S CORRECTNESS

In this section, we show that ZCLLC maintains the VINV
in the LLC in the following way. First, we show that servic-
ing Read and Write requests does not violate the VINV in
Lemma 1. Next, we show that ZCLLC also maintains VINV
when completing WriteBack requests in Lemma 2. Theorem 1
combines the lemmas and shows that VINV holds in ZCLLC.

A. Ensuring Vacancy Invariant in ZCLLC
We describe the LLC state that ZCLLC uses as a tuple
S = (Q,J ). Note that J is the set of cache lines that
are only cached in the LLC and are clean (Table I). We
use the syntax S + Req(A) to represent the LLC state after
performing a request Req on address A according to Algo-
rithm 1, where Req ∈ {Write,Read,WriteBack}. Further, we
use VINVHoldTrue(Q) to determine whether Inequality (1)
holds given state S.

Lemma 1. Given an LLC state S = (Q,J ), and its state
after performing a request, S + Req(A) = (Q′,J ′),

VINVHoldTrue(Q)⇒ VINVHoldTrue(Q′),

© 2023 IEEE.  Personal use of this material is permitted.   Permission from IEEE must be obtained for all other uses,  in any current or future media,  including 
reprinting/republishing this  material for advertising or promotional purposes, creating new collective works,  for resale or redistribution to servers  or lists, or 
reuse of any copyrighted component of this work in other works. 

Z. Wu, A. M. Kaushik, and H. Patel, “ZeroCost-LLC: Shared LLCs at No Cost to WCL,” in proceedings of IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), May 2023, pp. 1–11.



where Req ∈ {Read,Write}.

Proof. Assume VINVHoldTrue(S) is true, that is, Inequal-
ity (1) holds:

M − |Q| ⩾ N · T (2)

Let core ck issue request Req. This request can be a miss
or a hit in the LLC.
Case 1: LLC miss. When Req is a miss, A ̸∈ Q ∪ J . The
LLC must fetch A from main memory and send A to ck. After
Req, Q′ = Q, and J ′ = J . Substituting Q′ into Inequality (2)
gives VINV of S + Req:

M − |Q| ⩾N · T .

Both sides of the expanded inequality remain the same com-
pared to Inequality (2); thus, VINV holds.
Case 2: LLC hit. If Req is a hit in the LLC, A can be in Q,
J or privately cached by at least a core cj ̸= ck.
(1) If A is privately cached by at least a core cj , after Req,
Q′ = Q, and J ′ = J . The left-hand side VINV remains
unchanged; thus, VINV holds.
(2) If A ∈ Q, after Req, Q′ = Q \ {A}, and J ′ = J . Note
that Q \ {A} refers to the set difference between set Q and
set {A}.

The left-hand side of VINV increases by 1; thus, VINV
holds.
(3) If A ∈ J , after Req, J ′ = J \ {A}, and Q′ = Q. Notice
that J is not in Inequality (2); thus, VINV is unaffected.

In (1), (2), and (3), because Inequality (2) holds, the VINV
for S + Req also holds. Hence, VINVHoldTrue(Q′).

Key takeaway. Lemma 1 shows that servicing Read and
Write requests in ZCLLC does not violate the VINV. This
means that a Read or Write request from a core that reaches
ZCLLC does not result in back-invalidations.

Lemma 2. Given an LLC state S = (Q,J ), and its state
after performing a WriteBack, S +WriteBack(A) = (Q′,J ′),

VINVHoldTrue(Q)⇒ VINVHoldTrue(Q′).

Proof. For a WriteBack request to A, Algorithm 1 only
modifies Q in its invocation to WTLM (Line 6). WTLM is
described in Algorithm 2. Hence, it suffices to show that VINV
holds after performing WTLM in Algorithm 2.

Suppose VINV holds before the execution of Algorithm 2;
hence, M−|Q| ≥ N ·T . We use Q⋆ to denote the contents of
Q after executing lines 1-3 in Algorithm 2. Depending on how
many cores have a copy of A in their private caches, there are
two cases.
Case 1: More than one core has A in their private caches.
If more than one core has A in their private caches, then LLC
copy of A is not dirty. Hence, the condition on line 2 is not
satisfied and Q⋆= Q. This means that no further modifications
to Q are performed; hence, Q’ = Q after WriteBack(A). Since
Q’ = Q and VINVHoldTrue(Q) holds, VINVHoldTrue (Q’)
also holds.

Case 2: Only one core has A in its private cache. There
are two sub-cases to consider.
Case 2.1: A is not dirty in the LLC. In this case, the core
that has a copy of A in its private cache has not modified its
contents; hence, A in the LLC is not dirty. This is similar to
Case 1; hence, VINVHoldTrue (Q’) holds.
Case 2.2: A is dirty in the LLC. Since A is dirty in the LLC,
WriteBack(A) results in Q⋆ ← Q ∪ {A} shown in Line 3 in
Algorithm 2. Since, Q⋆ ̸= Q, the LLC must check whether
VINVHoldTrue(Q⋆) holds as shown in Line 5 in Algorithm 2.
If VINVHoldTrue(Q⋆) does not hold, then a cache line is
selected from Q⋆ for eviction, creating a CRE (Line 6). We
now show that it is always possible to to select a cache line
V from Q⋆ for UpdateMemory that creates a CRE.

Notice that M ≥ N · T (Section II) and |Q⋆| = |Q| + 1.
Rearranging the terms and substituting |Q| = |Q⋆| − 1 in
Inequality 1, we get |Q⋆| = M −N · T + 1 > 0. This means
that Q⋆ is not empty and it is always possible to select a
cache line V from Q⋆ for UpdateMemory that creates a CRE.
Finally, Line 8 removes V element from Q⋆. Hence, after
WTLM, Q′ = Q⋆ and |Q| = |Q′|. Thus, VINVHoldTrue(Q′)
holds.

Key takeaway. Lemma 2 shows that ZCLLC ensures VINV
holds after servicing WriteBack requests. This means that
any subsequent Read and Write requests from cores that
miss in the private caches and LLC will not result in back-
invalidations as there is always a CRE available.

Theorem 1 (invariant). Given an LLC state S, ZCLLC main-
tains the VINV.

Proof. (By induction on requests.) Base case. Initially, the
LLC is empty, that is Q = ∅. Inequality (1) reduces to M ⩾
N · T . This is an assumption required to guarantee inclusion
property for the LLC.
Induction hypothesis. The invariant holds for the first y
requests.
Inductive step. We prove that the invariant holds for the (y+
1)-th request. The (y + 1)-th request is either a WriteBack,
a Write, or a Read. Lemma 1 shows that VINV holds for
a Write or a Read. Lemma 2 shows that VINV holds when
WriteBack is performed on a cache line. The two lemmas
cover all scenarios of a request processed by the LLC. As a
result, VINV holds for the (y + 1)-th slot.

Key takeaway. Theorem 1 combines Lemma 1 and Lemma 2
and shows that ZCLLC maintains VINV.

Corollary 1. Using ZCLLC, in the worst-case, the number of
back-invalidations and main memory update in the LLC that
interfere with the request from the core under analysis is 0.

Proof. As shown in Theorem 1, VINV always holds in the
LLC. Hence, WriteBack always completes in one slot. Read
and Write also complete in the same slot without causing
a back-invalidation or a write-back. Therefore, no back-
invalidation or write-back causes interference.
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VII. WORST-CASE LATENCY ANALYSIS OF ZCLLC

Our latency analysis focuses on FFLM and WTLM of the
LLC. The FFLM services a Read or Write request from a
core under analysis cua while a WTLM services a WriteBack
request from cua. We use LArb to denote the worst-case latency
required for a core to be serviced a slot to perform either a
Read, Write or a WriteBack. Our system setup assumes a TDM
arbitration scheme, where the schedule is deployed with one
slot per core LArb = (N − 1)× SW .

Theorem 2. For ZCLLC, the WCL of performing WTLM for
cua’s request in the LLC, WCLWTLM, is

WCLWTLM = LArb + SW.

Proof. The WCLWTLM is composed of the arbitration latency
LArb for cua’s request to be issued and the latency to perform
WTLM. WTLM results in either the LLC updating the LLC
data cache or updating the main memory, both of which can
complete within SW .

Theorem 3. For ZCLLC, the WCL of performing FFLM for
cua’s request in the LLC is

WCLFFLM = LArb + SW.

Proof. The WCLFFLM is composed of the arbitration latency
LArb for cua’s request to be issued and the latency to perform
FFLM. Since ZCLLC does not incur any back-invalidations
or memory updates (Corollary 1), FFLM can fetch data for
cua’s request within a single slot, which costs SW .

Table II contrasts ZCLLC with other approaches to lim-
iting the number of back-invalidations and the number of
memory updates in the worst-case, together with the resulting
AWCL. ZCLLC is the only approach that achieves no back-
invalidations and no memory updates.

TABLE II: Worst-case latency of various configurations.

Configurations # of BI # of memory update AWCL

ROC [7] (N − 1)(N − 1) N − 1 O(N3)
ZIV+ROC 0 N − 1 O(N2)
ZCLLC 0 0 O(N)

VIII. EMPIRICAL EVALUATION

We integrate our proposed mechanism in gem5 [26] micro-
architectural simulator. We simulate configurations with 2, 4,
and 8 cores for ROC, ZIV+ROC, and ZCLLC. In addition, we
implement a general purpose data sharing coherent mechanism
that has no guarantees on timing predictability (GP). We
assume that each core is equipped with 4kB L1 private
instruction and data caches, and 16kB private L2 caches.
The private caches are backed by a shared 2MB LLC. The
private caches and the shared LLC communicate through a
shared bus deploying TDM arbitration with a slot width of
128 cycles, allowing one data transfer between the L2 and the

TABLE III: Observed WCL (Obs.) and Analytical WCL
(Analyt.) for different configurations (in cycles).

Core ZCLLC ZIV+ROC ROC GP
Obs. Analyt. Obs. Analyt. Obs. Analyt. Obs.

2 612 640 1124 1152 1124 1152 1114
4 1124 1152 3172 3200 3164 3200 3316
8 2148 2176 9314 10368 10198 10368 24166

main memory. We simulate the main memory with a DDR3
model with an access latency of 100ns.

Our evaluation includes synthetic benchmarks to exercise
the WCL and the SPLASH-3 [27] multi-core workloads. We
also make our source code publicly available [28].

A. Worst-case Latency

We begin by investigating the WCL properties of different
configurations.
Synthetic benchmarks. We develop synthetic benchmarks
in an attempt to exercise the WCLs for different configura-
tions. Our synthetic benchmarks involve the cores randomly
generating memory accesses to locations that map to the
same cache set in the LLC. Table III shows that for all
configurations, the analytical WCLs safely bound the observed
WCLs for all configurations with mechanisms to ensure timing
predictability. We also show the observed WCLs for the GP
configuration. The GP configuration exhibits a WCL of 840,
3566, and 18824 cycles, for 2, 4, and 8 cores, respectively.
Note that the observed WCLs of 2-core, 4-core, and 8-core
GP configurations exceed the analytical WCLs of the 2-core,
4-core, and 8-core ZCLLC configurations, respectively. The
observed WCLs of the 4-core and the 8-core GP exceed the
analytical WCLs of ZCLLC, ZIV+ROC, and ROC. Among the
configurations, ZCLLC shows the lowest analytical WCLs of
640, 1152, and 2176 cycles compared to ROC and ZIV+ROC.
SPLASH-3. We also evaluate the observed WCL with the
SPLASH-3 benchmarks. SPLASH-3 benchmarks contain a
wide variety of complex parallel multi-threaded applications
that exercise data sharing and synchronization across cores.
We use SPLASH-3 benchmarks to study the impact of these
inter-core interactions on performance and WCL when a
system deploys ZCLLC. Our results again show that the
observed WCL of ZCLLC, ZIV+ROC, and ROC are within
the analytical WCL. Our computed analytical WCLs as shown
in Table III shows that ZIV+ROC and ROC have strictly larger
analytical WCL compared to ZCLLC, Figure 5 shows that the
observed WCLs of ZIV+ROC and ROC are also larger than
or equal to the observed WCLs of ZCLLC for 2, 4, and 8 core
configurations across all benchmarks.

B. Performance

We evaluate the performance impact of ZCLLC on
SPLASH-3 workloads. We observe that both ZIV+ROC and
ZCLLC show a performance benefit compared to ROC. Fig-
ure 6 shows the speedup of ZCLLC, ZIV+ROC, and ROC
over the general purpose coherence mechanism where no
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Fig. 5: Observed worst-case latencies (in cycles).
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Fig. 6: Speedup of different configurations. Baseline configuration is GP.
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ZCLLC.

special mechanism guarantees timing predictability. For 2, 4,
and 8 cores, ZCLLC shows an average speedup of 1.01×,
1.02×, and 1.04× compared to GP. ZCLLC also shows an
average speedup of 1.02×, 1.07×, and 1.25× over ROC.
The performance benefit shown in ZCLLC is a result of
the removal of back-invalidations. Moreover, we observe that
employing ZCLLC does not cause performance degradation
compared to GP. Thus, ZCLLC preserves the performance
benefits of ZIV-ROC while not suffering from the enlarged
WCL.

C. WriteBack-induced Main Memory Accesses

In an inclusive LLC, as the execution proceeds, the LLC
will be filled with dirty cache lines written back by the private
caches. As a result, Q in VINV increases, and it is more
likely for the LLC to perform an UpdateMemory to maintain
VINV when processing WriteBack requests from the cores.
Figure 7 validates this observation by showing the fraction
of WriteBack that is converted into UpdateMemory (Line 7
in Algorithm 2). Note that benchmarks not presented indicate
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that the WriteBack does not introduce any UpdateMemory in
the LLC. Since ROC and ZIV+ROC do not incur WriteBack
when processing UpdateMemory, their fractions will always
be 0. For 2-core, 4-core, and 8-core setups that exhibit
UpdateMemory, the fractions of WriteBack converted to
UpdateMemory can be as high as 87.1%, 87.3%, and 87.7%,
respectively. Figure 8 shows the number of main memory
accesses normalized to ZCLLC. For 2-core, 4-core, and 8-core
setups, the numbers of main memory accesses performed by
ZIV+ROC are 1.06×, 1.02×, and 0.97× compared to the num-
ber of main memory accesses performed by ZCLLC. Hence,
although ZCLLC shows a high UpdateMemory fraction, the
total number of main memory accesses does not increase
compared to ZIV+ROC.
Relationship to performance. At a high level, the total
number of UpdateMemory affects performance directly since
more UpdateMemory leads to more main memory transfer.
However, a high fraction of WriteBack transformed into
UpdateMemory does not indicate an increase in the total
number of UpdateMemory. Instead, the fraction indicates
the percentage of main memory transfers that are moved
from Read and Write requests to WriteBack requests, which
is not directly related to the performance. Specifically, the
UpdateMemory experienced by ZCLLC for WriteBack would
occur in the Read and Write requests in ZIV+ROC or ROC
where a UpdateMemory or BI must be employed to create a
vacant entry.
Relationship to write-policy. In our opinion, ZCLLC is a
write-back cache. Although the UpdateMemory to WriteBack
ratio can be high, we would like to point out that the
UpdateMemory to WriteBack ratio identifies the ratio of
WriteBacks that end up having to update the main memory.
This does not suggest whether ZCLLC is either a write-
back cache or a write-through cache. Consider the following
scenario where we focus on writes to one cache set A in
ZCLLC. Suppose that all entries in set A have had prior
Writes to them; thus, every entry has valid data that has been
modified. Any subsequent Writes to A that miss will require
evicting a cache line before completing the request. Since this
cache line is dirty with modified data, the main memory would
need to be updated with this evicted cache line. In this case,
the ratio will be 1.0, but this is not an indication of the LLC
being write-through. The update to memory only happens in
this scenario because set A is full. Therefore, we feel that
ZCLLC is a write-back cache. ZCLLC could behave like a
write-through cache when the number of CREs is insufficient
for guaranteeing VINV, and it would perform UpdateMemory
to create a CRE under this scenario.

IX. RELATED WORKS

We broadly classify the rich body of research on estimating
timing interference with LLCs into two main approaches: (1)
methods that use static cache or measurement-based analy-
ses [29]–[33], and (2) software and hardware techniques that
minimize timing interference when using LLC such as LLC
partitioning [8].

Static cache analysis of multi-level caches [29]–[33] esti-
mates WCET of tasks by performing must-may and persis-
tence analyses. However, these analyses assume there is no
inter-core interference in the shared cache, which is in practice
achieved by cache partitioning. ZCLLC does not impose any
such constraints on the LLC. Further, with ZCLLC, we provide
a per-request WCL that we envision could be used as an input
to static cache analyses approaches. Building this into a WCL
analysis framework is reserved for future work.

Cache partitioning [8] is often used to partition the LLC on
predictable real-time multicore platforms. The main benefit
of LLC partitioning is that it removes inter-core or inter-task
timing interference by isolating a portion of the LLC to a
core or task. As a result, LLC partitioning simplifies timing
analyses [34] by allowing it to leverage existing single-core
analysis approaches without having to incorporate the effect
of accesses made by other cores. Cache partitioning can be
implemented in software through page coloring mechanisms
managed by the operating system [8], [35]–[37] or in hardware
through hardware logic managed by the LLC controller [37]–
[39]. A recent approach called cache bleaching [40] reduces
address fragmentation and run-time recoloring overhead when
page coloring is used to perform LLC partitioning. Cache
bleaching uses programmable logic to change the addresses
of requests from LLC before the requests arrive to the main
memory, such that addresses of the same color map to a
contiguous region in the main memory, allowing efficient
recoloring in the OS without costly data migration. ZCLLC is
orthogonal to cache bleaching when page coloring is used to
partition the LLC.

Realizing the importance of data sharing between real-
time tasks, authors in [9], [37] proposed techniques to enable
data sharing between real-time tasks using producer/consumer
buffers and wait-free buffers implemented in the LLC and
main-memory. However, in order to eliminate the interference
caused by back-invalidations, these works impose constraints
on their caching behavior such as locking the buffers in
the LLC (in order to prevent their eviction and hence, back
invalidation) and disallow caching of buffers altogether in the
cache hierarchy. On the other hand, ZCLLC takes a novel
approach in eliminating back-invalidations without imposing
any data caching constraints.

X. CONCLUSION

In this paper, we present ZCLLC, a shared inclusive LLC
that does not incur additional cost to the WCL of memory
requests when added to the memory hierarchy without an LLC.
ZCLLC can be shared and does not suffer from the limitations
of LLC partitions. Our results show that ZCLLC preserves
the performance benefit of ZIV while showing a performance
benefit of up to 25% compared to the state-of-the-art technique
of sharing LLC partitions.
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