© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Z. Wu, M. Gokhale, S. Lloyd, and H. Patel, “SCCL: An open-source SystemC to RTL translator,” in proceedings of International Symposium On Field-
Programmable Custom Computing Machines (FCCM), May 2023, pp. 1-10.

SCCL: An open-source SystemC to RTL translator

Zhuanhao Wu*, Maya Gokhale', Scott Lloyd* and Hiren Patel*
* University of Waterloo, Waterloo, Ontario, Canada
Email: {zhuanhao.wu,hiren.patel } @uwaterloo.ca
TLawrence Livermore National Labs., Livermore, USA
Email: gokhale2@lInl.gov
i Brigham Young University, Provo, Utah, USA
Email: scott_lloyd@byu.edu

Abstract—We present SCCL, an open-source tool that translates
SystemC designs into synthesizable register-transfer level (RTL).
SCCL supports a subset of Accellera’s SystemC synthesis standard
based on the 2011 revision of C++. We use LLVM’s Clang front-
end to parse SystemC designs, and a suite of analysis passes
to construct a SystemC-specific intermediate abstract syntax
tree representation called Hcode. Hcode simplifies translation
to other intermediate forms such as FIRRTL as well as direct
transcription to SystemVerilog or VHDL. Currently, SCCL pro-
vides a translation phase to generate synthesizable SystemVerilog.
Distinguishing aspects of SCCL include support for complex
templated class descriptions that facilitate concise, parameterized
hardware specification; introduction and full support for a new
type of synthesizable channel called sc_stream that maps directly
to standards such as AXI Stream, and a complete reference imple-
mentation targeting the Xilinx Vivado toolchain. We demonstrate
SCCL’s capabilities with a series of case studies including a highly
templated SystemC implementation of the ZFP [1] floating-point
codec. All case studies are deployed and executed on a Xilinx
Zynq UltraScale+ FPGA platform.

I. INTRODUCTION

SystemC is an electronic system-level design language em-
bedded in C++ that offers the ability to quickly co-design com-
plex hardware and software components to close the design pro-
ductivity gap and meet time-to-market constraints. SystemC-
based design methodologies are well established for the design
of system-on-chips (SoCs) [2] as they permit the modelling of
complex heterogeneous behaviours, fast simulation, and virtual
prototyping. This is often achieved by using a mix of C++ code
from libraries for drivers and tests, transaction-level models
for fast simulation, and register-transfer level (RTL) designs
for accurate representation of hardware components. SystemC
encourages fast design-space exploration of an SoC.

Once the design-space exploration is complete, components
chosen to be implemented in hardware are realized in one of
the following ways: (1) rewriting the components as a single
process amenable to high-level synthesis (HLS); (2) a complete
rewrite using a hardware description language (HDL) such as
SystemVerilog and VHDL or, (3) refining the SystemC design
to meet Accellera’s synthesis standard [3] and using SystemC
synthesis tools from CAD or FPGA vendors. Approach (1)
requires conflating a potentially multi-process description into
a single process design. Approach (2) requires re-implementing

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract No. DE-
AC52-07NA27344, specifically LLNL LDRD 19-ERD-004.

the entire hardware component in the target language. Both of
these approaches require careful verification to be done and
result in significant lengthening of the design time. Approach
(3) is the most natural path forward as Accellera’s synthesizable
standard is considerably large, but the availability of robust
tools that synthesize complex SystemC designs is limited.

Commercial solutions such as Siemens’ Catapult HLS, Ca-
dence’s Stratus HLS, and Xilinx’s Vivado HLS provide support
for SystemC. However, tools from CAD companies require
a substantial monetary investment (O($100K USD) per year),
which small-scale industries, research communities, and star-
tups might find beyond reach. For FPGA targeting, Xilinx’s
Vitis has dropped support for SystemC.

We strongly believe that a free and community-supported
SystemC synthesis or translator is needed to encourage a direct
path from SystemC to synthesizable RTL. Consequently, we
have developed SCCL, a Clang-based tool to translate SystemC
designs to synthesizable RTL via an intermediate abstract-
syntax tree (AST) called Hcode. SCCL supports complex C++
templated class descriptions, facilitating concise, highly pa-
rameterized hardware specifications. The translator recognizes
a new type of synthesizable channel called sc_stream that
maps directly to standards such as AXI Stream. The sc_stream
channel bundles Ready/Valid/Data ports, simplifying intercon-
nection of modules. SCCL also supports translation of both
SystemC method and thread processes. For the latter, SCCL
uses a novel thread process analysis algorithm. Note that SCCL
is not an HLS tool and it does not perform optimizations that
are common in modern HLS tools. This means any perfor-
mance characteristics of the original design are retained in the
generated RTL. SCCL’s open-source repository [4] provides a
complete reference implementation targeting the Xilinx Vivado
toolchain. Our main contributions in this work are as follows:

e« We present SCCL, an open-source Clang-based tool to
translate SystemC [4] designs to synthesizable RTL. SCCL
accepts a subset of Accellera’s synthesis standard [3],
and supports complex C++ constructs such as classes,
class inheritance, templated types, user-defined classes,
and virtual functions.

o We present an algorithm that translates SystemC thread
processes to state machines. These state machines can be
directly translated into RTL.

e We introduce a SystemC-specific intermediate AST,

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Z. Wu, M. Gokhale, S. Lloyd, and H. Patel, “SCCL: An open-source SystemC to RTL translator,” in proceedings of International Symposium On Field-
Programmable Custom Computing Machines (FCCM), May 2023, pp. 1-10.

Hcode, that simplifies translation to other lower-level IRs
such as FIRRTL, and to SystemVerilog or VHDL.

o We explore SCCL’s use with four case studies. The first
case study is a moving average filter commonly used as
a component in streaming applications. The second is a
ZFP [1], [5] design that focuses on a novel floating-point
compression technique important for high-performance
scientific computing. The third is a systolic array design
for matrix multiplication, which serves as one of the under-
lying components in many machine learning applications.
The last case study is an integer divider using SystemC
thread processes. The source code of SCCL and case
studies can be accessed through [6].

II. RELATED WORK

Languages and frameworks to generate hardware has seen a
resurgence in the recent past with the innovation of frameworks
such as Chisel, PyMTL, and ROHD. In this section, we
primarily concentrate our discussion on synthesis approaches
that generate hardware from SystemC. Broadly, there are dy-
namic and static approaches to generating RTL from SystemC.
Dynamic approaches execute the design by executing a portion
of the SystemC simulation called elaboration, which con-
cretizes design information such as module instances, their port
bindings, and netlist. Static approaches analyze the SystemC
source to extract the relevant design information. While dy-
namic approaches enable flexibility, static approaches are self-
documenting as they do not depend on runtime information.
Therefore, SCCL opts to use a static approach.

Similar efforts as ours include [7]-[9]. Authors of [7] present
a bi-directional compiler between SystemC and Verilog. How-
ever, support for classes, class hierarchies, virtual functions, and
template types appears to be missing. Authors in [8] present
a tool to analyze SystemC designs, but have no support for
its translation to gates. The most promising approach is Intel’s
SystemC-compiler [9] (ICSC), a dynamic approach, which does
translate SystemC designs to synthesizable Verilog with support
for several C++ constructs. ICSC’s first public release was in
late 2020, a couple of years into the development of SCCL, and
due to ICSC’s infancy at that time, we discovered that language
support was not complete. ICSC has progressed further and
a comparison with its translation would be considered in the
future. Further, we want a path from SystemC to other target
languages such as Chisel through FIRRTL, and potentially
other intermediate representations such as MLIR, which, to
our knowledge, are not planned for in ICSC. As a proof of
concept of such a path, our tool targets an internal intermediate
representation, Hcode, to balance the complexity between sup-
porting SystemC features and amenability to synthesis, where
other intermediate representations strive at the latter but lack
at the former. We leave the extension to other intermediate
representations as future works. As another aspect, SCCL
includes support to synthesize an FPGA bitstream from the
generated SystemVerilog and to run the generated design on
a Xilinx Pynq board. SCCL’s philosophy is to remain open-
source and community-driven and supported.

TABLE I: SCCL Hcodes

Category | Description

SC object | module, port, signal, var, method, thread

types typedefs for user-defined record types, with templates instantiated
bindings port bindings and sensitivity lists

functions module init and user-defined constructors, methods and functions

IIT. TRANSLATING SYSTEMC TO RTL

SCCL has three phases as shown in Figure 1: (1) pars-
ing the SystemC design, (2) Hcode lowering, (3) and HDL
generation. The first phase parses SystemC designs specified
using Accellera’s synthesizable 1.4.7 [3] standard and gathers
structural information about the design. The second phase
uses this structural information to transform Clang’s AST to
Hcode, an intermediate representation (IR) suitable for HDL
generation. While Hcode is generic and could further target
other IRs such as FIRRTL or MLIR, we provide a path
to generate synthesizable SystemVerilog. In the third phase,
we translate Hcode to SystemVerilog. To support a tangible
hardware platform, the third phase includes tools to compile
and deploy generated designs on an FPGA board.

A. Parsing and structure construction

SCCL uses Clang to parse and create an abstract syntax tree
(AST) of the SystemC design [10]. SCCL traverses the AST
using matchers to recognize and extract structural SystemC-
specific definitions. This information includes instantiated Sys-
temC modules, ports and signals of each module, process
type (thread or method), member functions implementing the
process, and so on. The structural representation delivers quick
access to the underlying Clang AST and to the control-flow
graph (CFG) of threads defined in the SystemC design.

B. Synthesizable channel type

Similar to the sc_fifo type in SystemC, a synthesizable
channel type called sc_stream is introduced. It serves as a
connector for data flows from one module to another. In
conjunction with this channel type, two port types are also
thI‘OduCCd, sc_stream_in and sc_stream_out. They serve as
endpoints on modules for connecting channels. In contrast to
the sc_fifo type, the sc_stream type and corresponding ports
are synthesizable with an implementation that maps directly
to an AXI Stream. Flow control on an sc_stream channel is
realized by bundling Ready/Valid signals with the other data
signals. Through the sc_stream template parameter, complex
structures of signals can be specified for the data.

C. SystemC-specific translation to Hcode

The Hcode AST plays a central role in SCCL’s design
flow. The Hcode constructs describe SystemC instances and
expresses the behaviour of the SystemC processes in a simpli-
fied AST. This simplified Hcode AST makes transcription to
synthesizable RTL straightforward. Notice that Hcode AST is
carefully designed to be be agnostic of the target language, and
to allow transformations to other commonly-used IRs such as
FIRRTL. Hcode opcode categories are shown in Table 1. During

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Z. Wu, M. Gokhale, S. Lloyd, and H. Patel, “SCCL: An open-source SystemC to RTL translator,” in proceedings of International Symposium On Field-
Programmable Custom Computing Machines (FCCM), May 2023, pp. 1-10.

3 template<typename FP,

SystemC Desig « RTL
”1| Generator
Demand-only Analysis
Clang ; :
Structural Function Analyéls ~)[Hco de A ST] HDL
Matchers Info. Thread Analysis . Generation
Synthesis Transforms i
[T): FIRRTL IR F--+
Parser v s \
Hcode Lowering C .. ?@ FPGAs
tm-- - » MLIR F---

Fig. 1: Overview of SCCL’s design flow.

the Hcode lowering phase, SCCL executes several analyses. We
briefly describe a subset of these analyses next.

Demand-only analysis. We use a demand-driven analysis in
generating the Hcode starting at the top-level SystemC module
to any reachable submodules from there. SCCL has extensive
support for templated SystemC modules. Consequently, Hcode
lowering generates a unique definition for each template param-
eter combination encountered in templated module declarations.
Shown in Listing 1 is a SystemC module with three template
parameters with a definition for a version with piM=2. The
hMethodCall parameter (member function name) encodes
the template instantiation: the module has been instantiated with
FP=<11,52>, B=64, and DIM=2.

template<typename FP, typename B, int DIM>
struct decode_stream;

typename B>
B, 2>:

struct decode_stream<fFP, sc_module

5 AT

s hMethodCall zhw__decode_streamfp_t1l1l_52_bits_t64_2...

...__get_window_func_1 [
hVarref b_wrk_ms_proc_local_6 NOLIST
hVvarref dreg_bits_ms_proc_local_11 NOLIST
]
Listing 1: Templated module declaration and member function

call.

The original SystemC design may have multiple templated
types declared, but not necessarily used. Hcode only generates
the templated types necessary for the design’s implementation.

SCCL also supports the inheritance of SystemC modules,
and user-defined C++ class declarations, and it resolves the
use of overridden functions that can be statically determined.
Within a SystemC module’s scope, ports, signals, and variable
declarations are instantiated, with templated data types resolved
using the template parameter values provided by the structural
information. We make considerable effort to preserve the names
of declarations for readability of the generated RTL. Names of
fields in structure types are also retained and field references
are constructed to correlate to the original SystemC design.

Process analysis. Hcode lowering supports both SystemC
methods and thread processes. We identify a subset of the
supported features and challenges SCCL addresses.

C++ statements, local variables, SystemC constructs. Each
process’s body gets translated to Hcode. Many C++ statements

such as conditionals, loops and function calls have correspond-
ing constructs in RTL that are directly translated to Hcode
AST. Examples of statements in this category include if and
switch statements, looping statements such as for and while,
and function calls. Most arithmetic operators translate directly
to Hcode as well. However statements such as break require
careful processing. A break in an sc_method translates directly
to Hcode, but for a sc_thread, Hcode uses return within a
function for semantically equivalent behavior.

Initialization of module-level variables and signals must
be handled differently than those local to an sc_process
(sc_method oOr sc_thread). At the module level, these objects
are initialized in a reset block; in an sc_process, they are ini-
tialized at entry to the process. Variables declared in compound
statements are promoted to the process level. Additionally for
thread processes, all local variables are further promoted to
module scope along with corresponding shadow registers to
store state across clock boundaries.

Clang’s AST includes classes and functions that are used to
simulate the SystemC design, which we wish to ignore during
Hcode generation. For example, the simulation of SystemC
datatypes and the sc_module constructor functions are irrele-
vant to synthesis. SCCL recognizes such reference SystemC
simulation constructs and discards the corresponding Clang
AST’s sub-tree. Member functions and operator calls related
to SystemC types generate SystemC-specific Hcode, e.g. for
signal and reads/writes and for operations on SystemC types
such as sc_int. SystemC intrinsic functions are recognized and
annotated in Hcode.

User-defined classes. In addition to using built-in SystemC
types and functions, the design may define new, potentially
templated, classes with associated constructors, operators, and
methods. During Hcode generation, references to user-defined
C++ classes and objects are resolved. Template parameters
are instantiated. Type constructors and calls to template-type-
resolved user-defined member functions used in a process are
cataloged. Hcode for the member function calls is generated,
and the functions invoked are added to a list of functions. In
a SystemC module, all member functions referenced in any
process are translated to Hcode. Function calls encountered
in the traversal of a function body will also be added to the
function catalog and their Hcode declarations generated. The
module constructor is processed to translate port bindings and

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Z. Wu, M. Gokhale, S. Lloyd, and H. Patel, “SCCL: An open-source SystemC to RTL translator,” in proceedings of International Symposium On Field-
Programmable Custom Computing Machines (FCCM), May 2023, pp. 1-10.

Algorithm 1 runBuildFSM().

Algorithm 2 buildFSM(bb, VB, WV, VIV)

Require: SCFG G.
: Let V B be a set of visited blocks.
: Let VW be a set of visited blocks that are waits.
Let WV be a list of CFG blocks that have wait statements.
Let root be the root block of G.
buildFSM(root, VB, WV, VW)
while WV # () do
VB« 0
currBB + WV.pop()
buildFSM(currBB, VB, WV, VW)
end while

—_

SPORXIQNEDD

—_

sensitivity lists to Hcode. In the case of arrays of modules or
arrays of ports, port and sensitivity bindings may occur in fixed
iteration for loops. Loops (potentially nested) are unrolled to
generate individual bindings'.

Thread analysis. SystemC processes come in two forms:
methods and threads. The semantics of method processes are
that of always blocks in SystemVerilog. Thread processes, how-
ever, are distinct to SystemC, which require careful translation
into semantically equivalent RTL. A key distinguishing aspect
about thread processes is that it encourages the use of wait
statements. SystemC designs that use threads need to be con-
verted into their corresponding state machines. Although this
is not synthesis in the classical sense, the process of translating
SystemC threads to state machines does result in assigning
clock cycles to operations. SCCL uses a novel algorithm to
translate SystemC threads into state machines amenable to
synthesis. The algorithm has two steps. The first step converts
the thread process’s control-flow graph (CFG) into a suspension
CFG graph (SCFG) that separates every CFG block with one
or more wait statements such that every wait statement has
its own CFG block. This is done while preserving predecessor
and successor edges. The second step uses runBuildFSM and
buildFSM from Algorithms 1 and 2, which uses a recursive
algorithm mimicking a depth-first-search variant to traverse
the SCFG and construct the CFG blocks that must execute
in each corresponding state of the state machine. For brevity,
we abstract the algorithm to focus on the traversal. We do not
show the transformation from Clang’s CFG to SCFG, and the
collection of CFG blocks that provide the resulting RTL code.

The key intuition in the algorithm is that waits denote the
states, and the CFG blocks in between two reachable wait state-
ments represent the behavior to execute in the corresponding
state. Every occurrence of a wait changes the state; thus, the
reachable paths between two waits represent the behavior to
execute. The algorithms implement this as follows. Algorithm 1
assumes the SCFG was constructed, and executes buildFSM to
traverse the SCFG. The first execution of buildFSM starts at
the root block of the SCFG until the first occurrence of a
wait statement. Since a wait denotes a state transition, one
invocation of buildFSM ends when it encounters a wait, and
defines the first state in the state machine (often the reset state).
In addition, it is necessary to explore the reachable blocks from

'A limited form of subscript expression is currently supported.

1: Let toVisit be a list of CFG blocks to visit.

2: if bb has no successor then return end if

3: VB « VB U {bb}

4: toVisit.push(getSucc(bd))

5: do

6: Let currBB <« toVisit.pop()

7: if hasWait(currBB) and currBB ¢ VW then
8: VW < VW U {currBB}

9: WV « WV U {currBB}

10: end if

11: if (isTwoSuccLoop(curr BB) or isCond(curr BB)) then
12: do

13: Let loopVisited <+ VB

14: buildFSM(curr BB, LoopV'isited, WV, VW)
15: if hasUnvSucc(currBB) = false then
16: VB < VB UloopVisited

17: end if

18: curr BB « getUnvSucc(curr BB)

19: while currBB is valid
20: end if
21: if hasUnvSucc(curr BB) and
22: hasWait(currBB) = false then
23: toVisit.push(getSucc(curr BB))
24: else
25: toVisit.pop()
26: end if

27: while (toVisit.empty() = false)

this encountered wait; hence, buildFSM records this in WV.
This allows the algorithm to call buildFSM with the starting
block for the traversal at the wait block inserted into WV.
Notice that when each invocation of buildFSM starting at a wait
backtracks and returns to runBuildFSM, a state in the state
machine is defined. This continues until all waits have been
explored.

Once buildFSM is invoked in Algorithm 2, the algorithm
uses a depth-first-search (DFS) approach with several unique
features as explained next. (1) Whenever a wait is encountered,
it stops the forward (deepening) traversal, records the wait
block, and backtracks through the SCFG. Hence, waits force
the DFS to backtrack. (2) Conditional blocks and loop blocks
with two successors are considered special blocks, and they
must recursively invoke buildFSM while not affecting the blocks
visited (V' B). The main idea is to use buildFSM to explore the
subgraph starting at these special blocks. However, we explore
these subgraphs without affecting the traversal that caused the
DES to arrive at these blocks. Notice that this is essential
because traversals may repeatedly visit blocks that were already
visited in the traversal so far, which standard DFS does not
permit. This is important to support because a traversal from a
special block is perceived as a new traversal. Consequently, we
invoke buildFSM, but using loopV'isited to ensure V' B does not
get updated during the recursive invocation. It does, however,
get updated after there are no successors. For a block that is
neither a wait nor the special blocks, Algorithm 2 retrieves
the successor, if one exists, and ensures that it can be visited
next via inserting it into toV¢sit. This repeats until there are
no blocks to visit.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Z. Wu, M. Gokhale, S. Lloyd, and H. Patel, “SCCL: An open-source SystemC to RTL translator,” in proceedings of International Symposium On Field-
Programmable Custom Computing Machines (FCCM), May 2023, pp. 1-10.

hFunction for_stmt_waite_func [

B9 BO se : 9, 8, 8W
SC_MODULE(test) { -I 3 : 7' 2 hFunctionRetType NONAME NOLIST
in clk clk: 1 - > 6, 6W hCStmt NONAME [
sc_in_c clk; S2 162, 5 hSwitchStmt NONAME [
sc_in<int> inl; S$2.1: 2, 1, 7, 6, 6W hvarref state_for_stmt_waite# NOLIST
i . $2.2: 4, 4W hcstmt NONAME [
sc_&?ut<1nt> outl; s3 S35 hSwitchCase NONAME [
sc_in<bool> arstn; L) hLiteral @ NOLIST
int k; $3.1:2,1, 7,6, 6W hBinop - [
. . S3.2: 4, 4W hvarref k_scclang_global_1 NOLIST
void for_stmt_waite() { hLiteral @ NOLIST
k =0; 1
sy hBinop = [
wait(); hvarref _next_state_for_stmt_wait@# NOLIST
while (true) {] hLiteral 1 NOLIST
k =1; 0:|h|\->k:|]
7 hReturnStmt NONAME NOLIST
wait();
for (int i = 1; 1 < 2; i++ e
o 't oW LINA g
k = 2; hMethod for_stmt_wait@_state_update [
wait();
0) hCstmt NONAME [
} Binop @ (
k = 3; hvarref state_for_stmt_wait@# NOLIST

hVarref _next_state_for_stmt_wait@# NOLIST

}

}

SC_CTOR(test) {
SC_THREAD(for_stmt_waito);
sensitive << clk.pos();
async_reset_signal_is(arstn,

false);

1
hBinop @= [
hvarref wait_counter_for_stmt_waite# NOLTST

B2 B4
o=k =3

I
BAW [3]|WAT

1
hBinop @= [

]

hBinop @= [
hvarref _main_k_scclang_global_1 NOLIST
hvarref k_scclang_global_1 NOLIST

1

hVarref _next_wait_counter_for_stmt_waite# NOLIST

hVarref wait_next_state_for_stmt_waite# NOLIST
hvarref _next_wait_next_state_for_stmt_wait@# NOLIST

function automatic void for_stmt_wait@_func ();
begin
case(state_for_stmt_waito)
0: begin
k_scclang_global_1 = 0;
_next_state_for_stmt_wait® = 1;
return;
end
end
endcase
endfunction
always @(*) begin: for_stmt_wait@_state_update
state_for_stmt_wait® = _next_state_for_stmt_wait;
wait_counter_for_stmt_wait® =
_next_wait_counter_for_stmt_waite;
wait_next_state_for_stmt_wait@ =
_next_wait_next_state_for_stmt_waite;
_main_k_scclang_global_1 = k_scclang_global_1;
for_stmt_wait@_func();
end

(a) SystemC thread process. (b) SCFG and blocks in states.

(c) Hcode fragment. (d) SystemVerilog fragment.

Fig. 2: Tllustrative example of analyzing SystemC thread process.

Example. Figure 2 highlights the main features of the al-
gorithm. The SystemC thread process has three waits with
the code behavior simply assigning values to a variable (Fig-
ure 2(a)). Figure 2b shows the SCFG generated by SCCL.
Notice that waits have their own block while preserving the
predecessor and successor relationships. The table on the right
shows the blocks traversed at every invocation of buildFSM. The
first invocation of buildFSM starts at block 9 until it reaches
the wait in block 8W. Then buildFSM backtracks resulting
in the path taken to produce the first state as shown in the
table by SO. Block 8W was inserted into W'V to start the
next traversal at this block and explore the SCFG to find the
next reachable wait. The next invocation of buildFSM starts
at block 8W and traverses into the while loop until it reaches
block 6W. Once again, the block is inserted into WV, and
the traversal ends by backtracking up to the starting block.
This results in state S1 and its corresponding visited blocks.
So far, this example illustrates the terminating condition for
the traversal to include waits, one of the first novelties in
the algorithm. Starting at block 6W, the traversal encounters a
special block at block 5. This is because it is a loop that has two
successors (isTwoSuccLoop): one where the loop condition
evaluates to true (block 2) and the other to false (block 4).
The algorithm recursively calls buildFSM while preserving the
history of visited blocks V' B. Thus, the algorithm traverses
through the true path of the for loop through the while
loop and back to block 6W where it begins backtracking to
the starting block 5. Since there is another successor, the path
of visited blocks is recorded as S2.1, and the traversal continues
on the false path ending at block 4W yielding S2.2. Since block
6W is a wait and it has already been visited as recorded in
VW, block 6W is not a candidate for the starting block of the
traversal again. We only need to traverse from the starting block
6W once. However, block 4W has not served as the starting
block for the traversal. Therefore, the next traversal starts at
block 4W, revisits block 5, and once again traverses through

the true and false paths as shown in S3.1 and S3.2. Note that
break statements within loops are seamlessly supported with
buildFSM. This is because a break statement results in an edge
to a block outside of the scope of the loop, which the current
traversal approach accommodates. Since buildFSM has used all
wait blocks as starting blocks, all states of the state machine
have been generated as shown in the table.

Hcode thread transforms. The generated Hcode for a thread
process has three components: a process body hFunction
containing the executable statements in the sc_thread, a
hMethod containing the state update control logic, and an ini-
tiator hMethod to initialize state control variables and call the
body hFunction. Figure 2(c) shows that the Hcode generates
a switch statement in the body hFunction that selects the
blocks to be executed according to the current state as shown
in the table in Figure 2(b). waits get transformed into state
variable updates within a case in the body hFunction. The
hMethod updates a collection of control variables including
current and next state, and counters to count down wait states
for waits that require more than one clock cycle of waiting.

Hcode thread generation. The generated RTL (Figure 2(d))
mirrors the three components in the Hcode: a synchronous
process that updates states and tracks persistent signals
whose values must persist across wait Statements; a func-
tion that determines next states and persistent signal val-
ues in the next clock cycle; and, a combinational pro-
cess that drives the persistent signals in the next clock cy-
cle. These three components correspond to the state update
hMethod, hFunction, and the initiator hMethod, respec-
tively. The synchronous process implements the signal and
state changes across wait statements and is clocked. For
example, the value of k is persistent across wait statements,
which corresponds to _main_k_scclang_global_1. Ev-
ery clock cycle, _main_k_scclang_global_1 is updated
with k_scclang_global_1, where the latter is an auxiliary

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Z. Wu, M. Gokhale, S. Lloyd, and H. Patel, “SCCL: An open-source SystemC to RTL translator,” in proceedings of International Symposium On Field-
Programmable Custom Computing Machines (FCCM), May 2023, pp. 1-10.

variable that tracks to the last value before a wait is called
in the SystemC design. The synchronous process captures the
reset logic specified by async_reset_signal_is () in SystemC.
The function implements the signal and state changes between
wait statements with a switch statement. Consider the two
wait statements on lines 12 and 15, which corresponds to
S2. Depending on whether the for loop is executed or not,
k_scclang_bloal_1 is either updated with 2 on line 14 or
with 3 on line 17. Finally, the combinational logic ensures the
initialization of the auxiliary variables and calls the function.

D. RTL generation

SCCL generates HDL from Hcode AST employing Python.
Currently, SCCL supports the generation of synthesizable Sys-
temVerilog. SCCL parses Hcode AST with the lark library [11]
to get a recursive representation of the AST. SCCL then trans-
forms the Hcode AST representation through multiple passes.
Separating the translation into multiple passes facilitates future
extensions. We highlight two passes in the HDL generation
process, in the order they take place.

Type collection and expansion (TCE). The TCE pass
first identifies and stores the Hcodes of user-defined types
by traversing the AST. This is possible because the Hcode
AST maintains the types and names of members of each
C++ class in an hTypedef Hcode. Next, TCE traverses all
variable declarations with a user-defined type, including port
definitions, variables, and signals and flattens these declarations
into individual members, with the stored hTypedef Hcode,
where the member names are concatenated after the original
variable name. TCE also supports variables declared as an array,
in which case a variable of user defined types will be expanded
into arrays of members. Each generated array, representing
a single member, has the same dimension as the original
array. Consider a C++ class with two integer member fields:
class A {public: int a; int b;}, and a variable declared
as A arr[2]. TCE expands arr into two arrays expressed in
SystemVerilog as 10gic[31:0] arr_a([0:1]; and logic[31:0]
arr_b[0:17];.

Assignment specification (AS). AS pass determines whether
an assignment in the SystemC design should be translated
into a blocking assignment (BA) or a non-blocking assignment
(NBA) in a procedure, and is specific to SystemVerilog. In
SystemVerilog, a BA from 1 to a variable a takes the form
of a = 1 while a NBA takes the form of a <= 1, where both
of them can be written as a = 1 in SystemC. Briefly, the
difference between a BA and a NBA is that accessing a variable
assigned by BA immediately will obtain the assigned value
while accessing a variable assigned by NBA will obtain the
value assigned by the last execution of the procedure. The
correct use of BA and NBA is crucial to maintain the correct
behavior of the design. By default, the semantics of a SystemC
assignment is BA. SystemC models the delayed assignment by
using specific types such as sc_signal. The AS pass identifies
variables declared as sc_signals and translates the assignments
to these variables as NBA, while assignments to other variables

such as local variables and C++ primitive types are translated
into BA. The AS pass may result in a mix of BA and NBA,
which is avoided in manually written SystemVerilog since the
mix may lead to unexpected results by the designer. This mix
of BA and NBA is required to maintain the SystemC and
C++ behavior and is managed automatically by SCCL. We
believe that the mixing of BA and NBA is benign, and that
it is important to preserve as much as possible the original
description of the design in the generated RTL.

E. CI Integration

SCCL’s development uses continuous integration (CI) to
ensure that changes and additions by the developers and the
community are automatically integrated into the code repos-
itory, and tested for correctness. Since SCCL supports trans-
lating SystemC design to Hcode and Hcode to SystemVerilog,
we need facilities to provide software testing, and hardware
testing. We perform the software testing via doctest [12] and
hardware testing using pytest [13]. Both of these are driven
by CMake’s ctest, and executed by the repository’s automated
actions whenever a commit is merged into the main repository.

Docker Instance. We use a Docker instance with all the
pre-requisites such as Clang, SystemC, and other build tools
deployed in the instance to accelerate the compile and test
execution with the CI. For each version of Clang, we publish
and maintain the corresponding Docker instance. An additional
benefit is that we can use the Docker instance for development,
which eliminates the need to modify the developer’s underlying
system.

CI for Parser and Hcode. doctest provides a fast and
convenient unit testing framework for SCCL’s parser and Hcode
generation. Currently, SCCL uses doctest for three types of
tests: (1) tests for specific data structures for its implementation,
(2) tests for its newly-introduced algorithms such as the state
machine generation from SystemC threads, and (3) tests to
ensure correct parsing of structural information. (1) allows
us to ensure the correct operation of data structures used
in SCCL, and they also serve as examples of how to use
these data structures. (2) ensures that the new algorithms we
introduce in SCCL are verified. For example, the algorithm to
translate SystemC threads into state machines for synthesis was
carefully verified with manually crafted tests and several tests
included with SystemC-Compiler. Since the development of
SCCL promotes plugins, such tests do not require including
the plugin that generates the Hcode. This allows one to focus
on the plugin responsible for generating the state machine for
SystemC threads, and expedite debugging. (3) confirms that
the structural information extracted from SystemC designs has
correctly been parsed. These are all enabled with doctest, and
their integration with ctest. A user can select any subset of tests
to execute during development.

CI for RTL generation. SCCL uses pytest for testing the
generation of RTL. There are two types of RTL generation
tests: (1) tests for RTL generation from Hcode, and (2) tests
for SCCL’s ability to generate RTL in an end-to-end fashion,

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Z. Wu, M. Gokhale, S. Lloyd, and H. Patel, “SCCL: An open-source SystemC to RTL translator,” in proceedings of International Symposium On Field-
Programmable Custom Computing Machines (FCCM), May 2023, pp. 1-10.

26

converting SystemC designs into SystemVerilog RTL design.
(1) ensures SCCL correctly performs passes on Hcode, such as
TCE and AS, and generates correct RTL code. For example,

expected field names. (2) ensures the overall functionality of
SCCL. Each test case in (2) converts a SystemC design into
its corresponding RTL design, and consists of the following
three steps enabled by the pytest-steps plugin. First, the test
attempts to generate the Hcode from the SystemC design from
the parser. Second, the test attempts to generate RTL design
from the Hcode specification. The generated Hcode and RTL
design can be checked against a golden Hcode and RTL design
that is known to be correct. Finally, the test executes the CAD
tool (Vivado) given the generated RTL design as an input to
ensure the design is synthesizable. A subset of RTL generation
tests can be selected to execute during development similar to
the CI for parser and Hcode.

IV. EMPIRICAL EVALUATION

1

A. Moving average calculation

template<int WINDOW_SIZE>

) 72 SC_MODULE (moving_average)
these tests ensure that user-defined types are expanded into their -

We demonstrate SCCL with four case studies: (1) a movingw
average filter, (2) a hardware implementation of a floating-point 2

codec in a format customized to scientific data called ZFP [5],

(3) a systolic array design for matrix multiplication, and (4) an .

integer divider case study using SystemC thread processes. We

use Xilinx’s Vitis toolchain to compile the generated RTL to ™

target the Ultra96-V2 board’s Xilinx UltraScale+ FPGA. Note
that Xilinx’s latest toolchains, Vivado, Vitis HLS, and Vitis

only support using SystemC designs as analytical models and "
do not support the synthesis of RTL design in SystemC. These .
case studies show SCCL’s ability to accept complex SystemC s
and C++ constructs and generate synthesizable hardware. The

o

synthesized hardware is deployed, executed, and validated on

the FPGA platform.

template<int BW>

SC_MODULE (divider) {
typedef sc_uint<BW> val_t;
typedef sc_bigint<2 x BW> tmp_t;

sc_in<val_t> dividend;
sc_in<val_t> divisor;
sc_in<bool> wvalid;

sc_out<val_t>
sc_out<bool>

quotient;
vld;

for(int i = BW - 1; i >= 0;
if(_temp[i + 1].read()
_opl[i + 1].read()) {

i--) |

+ _op2[i + 1].read() <=

_temp[i] = _temp[i + 1].read() + _op2[i + 1].
read () ;

_quotient[i] = _quotient[i + 1].read() | (one
<< 1i);
} else {

_temp[i] = _temp[i + 1].read();

_quotient[i]

}

= _quotient[i + 1].read();

_op2[i].write(_op2[i + 1].read() >> 1);
_opl[i].write(_opl[i + 1].read());
_vld[i] .write(_v1ld[i + 1].read());

}

i
Listing 2: Division calculation with templated operand size.

{ ...
sc_signal <data_t> window [WINDOW_SIZE];
sc_signal<sc_uint<8>> n, insert;
sc_signal<data_t> sum;

sc_signal<data_t> cur_min, cur_max, cur_avg;
sc_signal<bool> datardy;
sc_signal<data_t> _cur_min, _cur_max;
sc_signal<data_t> dividend;
sc_signal<data_t> divisor;
sc_signal<bool> div_vld;
sc_signal<bool> div_out_vld;
divider<DATAW> u_div { "u_div" };
dividend.write ((sum.read () .to_uint () + datastrm.
data.read() .to_int ()));
divisor.write((n.read () .to_uint()+1));
div_vld.write (datastrm.valid_r());
if (datastrm.valid_r()) { // new data
if (_cur_min > datastrm.data) _cur_min = datastrm
.data;
if (_cur_max < datastrm.data) _cur_max = datastrm
.data;
window[insert.read() .to_uint ()] = datastrm.data;
if (n.read().to_uint () < WINDOW_SIZE) n.write(n.
read () .to_uint () +1);
sum.write (sum.read () .to_uint () + datastrm.data.
read () .to_uint () - window[insert.read () .to_uint ()
].read () .to_uint ());
if ((int) insert.read() >= WINDOW_SIZE-1) insert.

write (0);
else insert.write (insert.read()
datardy = true;

= A)g

}
Listing 3: Moving average calculation with templated window
size.

A common building block in various filtering operations is
computing the moving average of a stream of values. This
case study presents SystemC designs that compute such moving
averages. Specifically, we present three designs each differing
in the optimizations they offer for the division operation, which
is central to the computation. The first design, MA-Div, is the
simplest where the SystemC design uses the division operator
(e.g. a/b) as shown in Listing 3. This results in a direct mapping
of the division operator to SystemVerilog. Naturally, this yields
a complex combinational division logic that challenges timing
closure for frequencies beyond 15Mhz on the Ultra96-V2
board. Although the FPGA platform provides DSP slices, they
were not inferred by the FPGA synthesis tools. As our first
optimization, we changed the division operation to a bitwise
shift, resulting in our second design, MA-Shift. Although this
limits the division to be in multiples of two, the synthesized
design offers an improvement over the first, allowing the design
to reach the target frequency of 100Mhz. The second SystemC
design is not general. To address this, we implement a third
SystemC design, MA-Div-Sub, that fully utilizes the hardware
resources available in the DSP slices by implementing a fully
pipelined divider as shown in Listing 2. The divider takes as

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Z. Wu, M. Gokhale, S. Lloyd, and H. Patel, “SCCL: An open-source SystemC to RTL translator,” in proceedings of International Symposium On Field-
Programmable Custom Computing Machines (FCCM), May 2023, pp. 1-10.

MA-Div MA-Shift MA-Div-Sub
Configurations LUT Reg. LUT Reg. DSP LUT Reg. DSP
DW=16, WS=16 333 381 117 344 3 407 846 5
DW=16, WS=64 581 1151 383 1108 3 690 1646 5
DW=64, WS=16 1348 1485 467 1448 5 3592 9175 7
DW=64, WS=64 2012 4561 1296 4516 5 4656 12375 7

TABLE II: Resource utilization of moving average with dif-
ferent parameterization. pw is short for pataw; ws is short for
WINDOW_SIZE.

input the streams of dividend and divisor and performs division
by subtraction algorithm [14] to calculate the quotient. The
divider is parameterized by a template parameter that denotes
the width of the dividend and divisor. Notice that the divider is
a submodule u_div within the moving average module, where
the running average value of a window of an input data sample
stream is generated as an output stream.

The window size is a template parameter to the moving aver-
age module as shown in Listing 3. Note the use of the SystemC
read and write methods to get and update the sc_signal class
variables. The signals’ template parameter is itself a templated
class sc_uint<DATAW> where DATAW is a compile-time integer
constant. In this example, it has been set to 64.

Table II shows the resource utilization of the moving average
modules. The MA-Div modules reach a frequency of 15Mhz and
do not utilize any DSP slices on the FPGA. With MA-Shift, we
are able to achieve a frequency of /00Mhz, while utilizing DSP
slices. Moreover, MA-Shift requires fewer LUT and registers
compared to MA-Div as the division is replaced with shifting
logic. MA-Div-Sub modules achieve a frequency of 100 MHz,
utilizing more DSP slices compared to MA-Shift. Table II shows
the results for the moving average designs with paTaAw set to
16 or 64, and with winpow_s1zE set to 16 or 64. The results
show SCCL’s capability of handling template parameters such
as wiNpow_sIzE, and compile-time constants such as DATAW.

B. ZFP: Floating point codec

ZFP [5] is a well established floating-point codec with
both software [15] and hardware [16] implementations. ZFP
is intended for use with scientific multi-dimensional arrays
that describe physical phenomena. We use SCCL to map a
synthesizable SystemC implementation of the ZFP algorithm
to SystemVerilog, and then onto the FPGA.

The high level flow of the ZFP hardware encoder and
decoder is shown in Figure 3. The ZFP hardware algorithm
is highly templated, as is shown in a small code fragment
Listing 1. The top level encoder and decoder designs have
template parameters floating-point format rp, array dimension
D and streaming data width w used. Template parameters enable
flexibility in the implementation. rp is itself a user-defined
class with parameterized exponent and fraction sizes. In the
ZFP hardware algorithm, user-defined classes that include these
templated types are used in SystemC ports and signals.

This complex design, with 1800 lines of SystemC, compiles
automatically through SCCL to RTL, passes through the Vivado
2022.1 tool chain, and runs correctly on the Ultra96-v2 board.

Lep|

Find_emax }»FH
1

emacd ssplit

o -{ decode_strean Hp\a\wﬁ
enchits

Fig. 3: ZFP hardware with encoder (top) and decoder (bot-
tom) [16].

fwd_cast }»b\ud»

encode_block }»mmw

block_buffer }»h\mk»

encode_ints }»p\m»

encode_strean|-encis>

FIFO

decode_ints }»n ou»{ block_buffer }»mm—»

FIFO

decode_block }—u mk—’_:{ inv_cast }—rp—»

Table III demonstrates the resource utilization for the ZFP
hardware encoder and decoder. The encoder and the decoder
are of type zhw::encode<FP, D, W> and zhw::decode<FP, D
, w> in C++ respectively. For both the encoder and decoder,
rp takes fp_t<k, F>, which is a user-defined template type
that denotes a floating-point format with E-bit exponent and
r-bit fraction. Our case study uses 32-bit (fp_t<8,23>) and
64-bit (fp_t<11,52>) floating-point format that comply with
the IEEE-754 standard. We demonstrate an encoder configura-
tion compressing 64-bit floating-point numbers and outputting
a 64-bit data stream (zhw::encode<fp_t<11,52>,2,64>, El),
and a lightweight encoder compressing 32-bit floating-point
numbers and outputting a 32-bit data stream (zhw::encode<
fp_t<8,23>,2,32>, E2). Both El and E2 achieve a clock fre-
quency of 50MHz on the FPGA. We also present two decoder
configurations, one decompressing 64-bit data stream to get 64-
bit floating-point numbers (zhw: :decode<fp_t<11,52>,2, 64>,
D1), and another decompressing 32-bit data stream to get 32-
bit floating-point numbers (zhw::decode<fp_t<8,23>,2,32>,
D2). The decoder configurations D1 and D2 mirror the encoder
configurations with a clock frequency of 20MHz on the FPGA.
The reported frequencies represent the characteristics of the
ZFP hardware data path which are preserved by SCCL.

Table III shows the resource utilization for the two en-
coder configurations and two decoder configurations (El, E2,
D1, and D2) with different hardware parameters. The 64-
bit encoder (El) takes up the most resources on the FPGA
with 12262 LUTs, 16969 registers, and other resources. The
encoder that compresses 32-bit floating-point numbers, E2,
takes up significantly fewer resources, consuming 2525 LUTs,
1153 registers, and other resources. The reduction in resource
utilization compared to its 64-bit counterparts arises from
smaller structures for holding internal data and a reduced level
of encoding logic. We observe a similar trend for D1 and D2.
The decoder decompressing 64-bit data stream, D1, consumes
14380 LUTs and 19974 registers, while D2, operating on a 32-
bit data stream, only consumes 3135 LUTs and 6780 registers.
Note that the changes between different configurations are
achieved by solely varying the template parameters. Hence, we
show SCCL’s value in rapid prototyping, leveraging templates
in C++.

C. Systolic array

Systolic array (SA) architectures for matrix multiplication
(MMULT) are essential in many of today’s machine learn-
ing applications. Examples of SA for MMULT are already
employed in various commercial accelerators such as Google

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Z. Wu, M. Gokhale, S. Lloyd, and H. Patel, “SCCL: An open-source SystemC to RTL translator,” in proceedings of International Symposium On Field-
Programmable Custom Computing Machines (FCCM), May 2023, pp. 1-10.

Configurations E1l E2 D1 D2

Module Name LUT Reg. LUT Reg. LUT Reg. LUT Reg.
Total 12262 16959 2525 1153 14380 19974 3135 6780
block_buffer 582 2057 68 212 1030 2052 5 4
(en/de)code_block 7151 11221 482 696 5129 13241 2179 5156
(en/de)code_ints 1421 87 1115 79 5387 1076 180 46

(en/de)code_stream 1553 239 817 126 969 478 105 38

find_emax 859 2114 25 21

(fwd/inv)_cast 589 1029 5 5 1335 1036 402 513
(ssplit_ex/cast_buffer) 122 212 17 14 514 2037 257 1013
Lines of code 1779 1823 1728 1728

TABLE II: ZFP hardware codec resource utilization on
Ultra96-V2 with different parameterization. Lines of code of
the generated SystemVerilog are reported.

Matrix B input streams (M) A x B =,
—_—

weaton 1 Geraion 2
1237 ryp347 [2426[1012
456 X[4321]: 545912833

3841(1417
4852120 24,
iteration 3 iteration 4

5

321 [0Ho] 32[1P0 3[o A
0, 1) *
6540 i 654 !0 65 [4]4 0]

cycle2

o

sum output} output B

Processing Element (P!

Matrix A input streams (N)

cycle0 401 cycle T
6

E = Z
Output streams 6124 ! ! []
(a) (c) cycle3 24 cycle4 54 cycle5 2

Fig. 4: (a) N x M systolic array. (b) Example partition of matrix
for performing MMULT on a 2 x 2 SA. (c) Iteration of SA.

TPU [17] and Xilinx DPU [18].In this case study, we show
SCCL’s ability to expedite the design of a SA for MMULT.
Our design is parameterized by the size of the SA and the type
of operands the SA operates on, specified by C++ template
parameters. A SA consists of regularly arranged processing
elements (PEs) programmed to perform common operations
such as multiplications and additions, and the PEs communicate
with each other through streaming interfaces. Figure 4a shows
an example of our SA design with N rows and M columns of
PEs that perform MMULT for two matrices A and B. Input
matrices are streamed into the SA, and both input and output
are buffered using FIFOs.

The process of MMULT by SA is split into multiple it-
erations, where each iteration computes a distinct sub-matrix
of size N x M in the product matrix. Hence, the size of
the SA is agnostic of the input matrices. MMULT partitions
matrices A and B into sub-matrices of IV rows and M columns,
respectively. Distinct pairs consisting of blocks from A and B
are fed into the SA to produce the /N x M product (sub-)matrix.
For example, consider multiplying a 4 x 3 matrix A and a 3 x4
matrix B using a 2 x 2 SA. Matrix A is partitioned into two
2 x 3 sub-matrices and B is partitioned into two 3 X 2 matrices
as shown in Figure 4b. Then, the 2 x 2 SA array goes through
4 jterations, each taking a pair of sub-matrices from A and B,
and produces 2 x 2 sub-matrices in the resultant matrix C.

Each PE performs the dot product of a row from A and a
column from B, where the underlying operation is the multiply-
accumulate (MAC) operation. Each PE in our SA has two input
ports and three output ports on its data path. The PE also uses
a register (Acc) for storing accumulated values. At every clock

Configurations 8x8 16x16 8x8-RTL 16X 16-RTL

Module Name LUT Reg. LUT Reg. LUT Reg. LUT Reg.
Total 6410 4771 24961 18139 6362 4770 24765 18139
pe 5418 3944 22751 16336 5464 3944 22945 16336
control_inst 4 4 5 5 5 6 5 8

TABLE IV: SA resource utilization on Ultra96-V2 with differ-
ent parameterization.

cycle, the PE takes the input from A and B, multiplies them,
and accumulates the product in Acc. Meanwhile, inputs A and
B are forwarded to outputs A and B so that a neighboring PE
can consume the values. When a PE finishes its computation,
the results are sent through the sum output port to a neighboring
PE so that it can be streamed out of the SA.

Figure 4c illustrates one iteration of running the MMULT
on a 2 x 2 SA. Initially, at cycle 0, the data values of the first
2 x 3 and 3 x 2 blocks from A and B respectively are fetched
and buffered for the systolic array. Also, all accumulators are
initialized to zeros. Note that padding zeros are inserted by the
control logic to guarantee correct results. At cycle 1, the PE
at (0,0) takes both input values, 1 and 1, and performs MAC
with the accumulator, updating the accumulator with 1. Note
that these inputs are passed to the neighboring PEs. At cycle
2, the PE at (0,0) takes the input values, 2 and 4, performs
MAC with the accumulator and obtains 9 (2 x 4 + 1). The PE
at (0,1) takes the input values passed from the PE at (0,0)
and the input buffer, which are 1 and 2, and performs MAC,
resulting in 2. The process continues and at cycle 3, the result
of PE at (0,0) is ready (24) and can be sent to the sum output
port. At cycle 4, the dot product result of PE at (0, 0) reaches
the output stream buffer and is ready to be fetched. Similarly,
the results of PE at (0,1) and (1,0) reach the output stream
buffer and can be fetched at cycle 5.

Figure IV shows the 8 x8 and 16 x 16 systolic array mapped
onto the Ultra96-V2 FPGA board with a target frequency of
100Mhz. We additionally show the same designs implemented
manually using SystemVerilog, labeled as 8x8-RTL and
16x16-RTL. In both SCCL generated designs and manually
implemented designs, the PEs take up the most resources. The
8 x 8 design takes up a total of 6410 LUTs and 4771 registers,
while the 16x16 design takes up a total of 24961 LUTs
and 18139 registers. This matches the fact that the design
scales linearly with respect to the number of PEs. Similarly,
8x8-RTL design takes up a total of 6362 LUTs and 4770
registers, while the 16x16—RTL design takes up a total of
24765 LUTs and 18139 registers. The differences in resource
utilization between the SCCL generated designs and manually
implemented designs are negligible. Hence, when generating
RTL designs, SCCL does not incur additional hardware costs.

D. Design using threads

We illustrate SCCL’s support for synthesizing SystemC
thread processes using an integer divider example. This case
study is similar to the divider in the moving average except
that the divider is using SystemC threads. Listing 4 shows the
division-by-subtraction algorithm implemented with SystemC

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Z. Wu, M. Gokhale, S. Lloyd, and H. Patel, “SCCL: An open-source SystemC to RTL translator,” in proceedings of International Symposium On Field-
Programmable Custom Computing Machines (FCCM), May 2023, pp. 1-10.

1

SC_MODULE (divider) {
typedef sc_uint<BW> val_t;
typedef sc_biguint<2 = BW> tmp_t;
sc_in<bool> clk;
sc_in<bool> arst;

sc_stream_in<val_t> dividend;
sc_stream_in<val_t> divisor;
sc_stream_out<val_t> quotient;

void thread_proc_1() {
_vld.write(false);
_opl_vld.write(false);
_op2_vld.write (false);
wait ();

while (true) {
if (_sync.read()) {
_opl.write(dividend.data_r());
_op2.write (tmp_t (divisor.data_xr()));
_opl_vld.write(true);
_op2_vld.write (true);
wait () ;

_opl_vld.write(false);
_op2_vld.write (false);
wait () ;

// perform div-sub division
_quotient = 0;

_temp = 0;
_opl = dividend.read();
_op2.write (tmp_t (divisor.read()));
_vld.write(false);
wait () ;
for(int 1 = BW - 1; i >= 0; i-—-) {

if (_temp.read() + (_op2.read() << i) <=

_opl.read()) {
_temp.write(_temp.read() +
<< 1));
_quotient.write (_quotient.read() |
<< 1));
}
wait () ;
}
_vld.write (true);
}
if (_sync_out.read()) {
_vld.write(false) :
}
wait ();

}

(_op2.read()

(1LL

Listing 4: Division-by-subtraction using threads.

threads. The design accepts a dividend stream and a divisor
stream as input. When values are valid in both streams, the
design starts calculating the quotient, which is sent to an
output stream. The design is parameterized by the number of
bits in the dividend and divisor, Bw. In the divider design in
Listing 4, the use of SystemC threads enables a sequential
description of the division-by-subtraction algorithm. Note that
the divider design splits the division into multiple steps and
is not pipelined, as pipelining is not the semantics of threads
in SystemC. SCCL translates this design with SystemC threads

Configurations LUT Reg. DSP
BW=8 86 68 4
BW=16 165 100 4
BW=32 357 164 6
BW=64 695 292 9

TABLE V: Resource utilization of divider.

into a SystemVerilog design using combinational and sequential
hardware as described in the thread analysis section.

Table V shows the resource utilization of the synthesized
design with the Bw of both dividend and divisor being 8, 16,
32, and 64. In all configurations, the design can be mapped
onto proper FPGA resources, such as LUTs, registers, and DSP
slices. For example, for Bw=64 configuration, the design utilizes
695 LUTs, 292 registers, and 9 DSP slices. The resource
utilization shows SCCL’s capability of mapping a SystemC
thread onto FPGA with adequate resources. All configurations
achieve an operating frequency of 100 MHz.

V. CONCLUSION

SCCL provides an open-source translator from SystemC to
synthesizable RTL capable of handling complex C++ constructs
such as templated types, class hierarchies, inheritance, and
virtual functions. We also present an approach to translate
SystemC thread processes into synthesizable RTL. To allow
translation to other IRs and frameworks, we develop an inter-
mediate AST called Hcode, with a reference implementation
translating Hcode to SystemVerilog. We illustrate SCCL’s use
with four case studies including various moving average calcu-
lation SystemC designs, a ZFP floating point codec, a systolic
array design, and an integer divider unit. Note that the ZFP
case study makes extensive use of advanced C++ constructs
and template parameterization. SCCL generates the RTL for
each of these case studies, and we deploy it on an FPGA. We
envision continued community and industry support in making
SCCL a strong, and free alternative to commercial solutions.

REFERENCES

[1] L. Noordsij, S. v. d. Vlugt, M. A. Bamakhrama, Z. Al-Ars, and P. Lind-
strom, “Parallelization of variable rate decompression through metadata,”
in 2020 28th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), 2020, pp. 245-252.

[2] M. Goli and R. Drechsler, “Automated design understanding of systemc-
based virtual prototypes: Data extraction, analysis and visualization,” in
2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2020,
pp. 188-193.

[3] “Accellera’s SystemC Synthesis
https://www.accellera.org/downloads/standards/systemc, 2016.

[4] “SCCL: An open-source tool that translates SystemC to RTL.” [Online].
Available: https://github.com/anikau31/systemc-clang

[5] P.Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Trans-
actions on Visualization and Computer Graphics, pp. 2674-2683, Dec.
2014.

[6] Z. Wu, M. Gokhale, S. Lloyd, and H. Patel, “SCCL: FCCM Artifact
Evaluation,” 2023. [Online]. Available: https://zenodo.org/record/7813660

[71 C. Huang, H. Gao, Y. Zhong, and S. Cai, “A high-performance
bidirectional compiler for conversion between systemc and verilog,” in
Proceedings of the 6th International Conference on High Performance
Compilation, Computing and Communications, ser. HP3C ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
124-130. [Online]. Available: https://doi.org/10.1145/3546000.3546019

1.4.77

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Z. Wu, M. Gokhale, S. Lloyd, and H. Patel, “SCCL: An open-source SystemC to RTL translator,” in proceedings of International Symposium On Field-
Programmable Custom Computing Machines (FCCM), May 2023, pp. 1-10.

[8] A. Kaushik and H. D. Patel, “Systemc-clang: An open-source framework
for analyzing mixed-abstraction SystemC models,” in Proceedings of the
2013 Forum on specification and Design Languages (FDL), 2013, pp.
1-8.

[9] M. Moiseev, R. Popov, and I. Klotchkov, “SystemC-to-Verilog Compiler:
a productivity-focused tool for hardware design in cycle-accurate Sys-
temC,” in Proceedings of DVCON Europe, 2020.

[10] “LLVM/Clang Framework,” https://clang.llvm.org/.

[11] “Lark - a parsing toolkit for Python,” https://github.com/lark-parser/lark.

[12] “doctest: C++ Testing Framework,” https://github.com/doctest/doctest.

[13] H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe,
B. Laugher, and F. Bruhin, “pytest 5.0, 2004. [Online]. Available:
https://github.com/pytest-dev/pytest

[14] G. Hawkes, “DSP: Designing for Optimal Results,” High-Performance
DSP Using Virtex-4 FPGAs, Xilinx, 2005.

[15] “ZFP,” https://github.com/LLNL/zfp.

[16] “ZHW - ZFP Hardware Implementation,” https://github.com/LLNL/zhw.

[17] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” SIGARCH Comput. Archit. News, vol. 45, no. 2, p. 1-12,
jun 2017. [Online]. Available: https://doi.org/10.1145/3140659.3080246

[18] Xilinx, “Vitis AI User Guide (UG1414),” https://docs.xilinx.com/r/1.2-
English/ug1414-vitis-ai/Deep-Learning-Processor-Unit-DPU.

