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Abstract—This work presents MapleBoard: a set of open-
source hardware tools to implement predictable cache coherence
protocols in hardware. MapleBoard consists of the following: (1)
a novel domain-specific language (DSL) for specifying coherence
protocols and synthesizing the corresponding hardware; and,
(2) a real-time multicore hardware platform that seamlessly
integrates the coherence protocols synthesized from the DSL. This
platform has a memory hierarchy, a real-time bus interconnect
between cores, and various predictable arbiters. As a demonstra-
tion of MapleBoard’s efficacy, we explore hardware implemen-
tations of data bus organizations, and their impact on the worst-
case communication latency (WCL). An important discovery we
make is that a dedicated data bus (DDB) organization that allows
bidirectional data communication offers lower analytical WCL
bounds than any state-of-the-art predictable cache coherence
protocols. The analytical WCL bounds are improved by 84%,
90% and 94% for 2-core, 4-core and 8-core systems respectively
compared to prior works. We synthesize MapleBoard on the
Xilinx Virtex Ultrascale+ VCU1525 board, and validate using
both synthetic workloads and SPLASH-2 benchmark suite.

I. INTRODUCTION

Safety-critical systems applications in avionics and automo-
tive domains are deployed on multicore platforms to reduce
cost and improve average-case performance [1]–[4]. Recent
evidence of data communication in real-world safety-critical
systems applications [5] has prompted research efforts in
predictable data communication between cores on real-time
multicore platforms [6]–[11]. One recent approach employs
hardware cache coherence, which is the primary mechanism
for data communication in conventional multicore platforms
[6]–[10]. A hardware cache coherence mechanism enables
coherent data communication between cores and allows mul-
tiple cores to simultaneously cache the same data in their
private caches. The main component of a hardware cache
coherence mechanism is the cache coherence protocol, which
is a set of rules that dictate the communication of data
between cores. Prior research efforts on predictable cache
coherence mechanisms modified conventional cache coherence
mechanisms such that they are amenable to timing analysis
and therefore, allow one to statically compute worst-case
latency (WCL) bounds of a memory request under cache
coherence [6]–[9]. The resultant mechanisms retained most
of the performance benefits of conventional cache coherence
mechanisms, and outperformed alternate predictable data com-
munication approaches such as cache bypassing and task
mapping [6]–[9]. Although we are unaware of multi-core

platforms that implement predictable cache coherence mecha-
nisms, we expect them to be an attractive alternative to existing
data communication mechanisms given their predictability and
performance guarantees. Thus, we anticipate further research
into predictable cache coherence mechanisms, and we are
hopeful of its industry adoption.

Prior works in designing predictable cache coherence mech-
anisms [6]–[8] relied on micro-architectural simulators to
prototype and evaluate the mechanisms [12]. Simulation pro-
totypes are invaluable for rapid design space exploration and
validation. However, we contend that concrete hardware im-
plementations of predictable data communication mechanisms
have additional merits. (1) Certification processes for safety-
critical systems require detailed knowledge of the underlying
hardware platform to ensure that applications running on the
hardware never violate their WCL. Releasing the hardware
implementation to the public domain enables everyone to
ascertain this detailed knowledge. (2) The abstraction used
in simulation prototypes may not accurately capture certain
properties and optimizations of the hardware implementation.
Hence, solely relying on the simulation prototype may result
in deriving inaccurate or loose WCL bounds. (3) Finally,
we believe that a concrete hardware implementation of prior
and future hardware design research works on predictability
including predictable cache coherence mechanisms facilitates
hardware vendors and start-ups to adopt and integrate these
implementations into their products.

Our main contribution is MapleBoard1, which consists of
a set of hardware tools to facilitate the research community
to implement and evaluate predictable data communication
mechanisms in hardware. MapleBoard consists of the follow-
ing: (1) MapleDSL, a domain specific language (DSL) that
allows designers to rapidly describe and implement predictable
cache coherence protocols (protocol states and transitions
between states); and, (2) a real-time multicore platform with
configurable components such as the cache hierarchy, and
real-time bus interconnect arbitration policies. To show the
efficacy of MapleBoard, we present a case study that explores
the design space of data bus organization to achieve lower
WCL bounds of memory requests under predictable cache
coherence. In this case study, our proposed dedicated data
bus (DDB) organization lowers the WCL of memory requests

1MapleBoard available at https://github.com/caesr-uwaterloo/MapleBoard
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Fig. 1: Examples show the state transitions and an execution of MSI.

under predictable cache coherence compared to previous
works [6], [7] by approximately 84%, 90% and 94% for 2-
core, 4-core and 8-core configurations, respectively. We adopt
this organization in MapleBoard to empirically evaluate its
effectiveness and show it can be implemented in hardware;
consequently, a first hardware implementation of predictable
cache coherence on a real-time multicore platform on the
Xilinx Virtex Ultrascale+ VCU1525. Our empirical evaluation
shows that the observed WCL are reduced by more than 71%,
84% and 93% for 2-core, 4-core and 8-core configurations
respectively for PMSI and PMESI. Our evaluation also vali-
dates that the observed WCL of memory requests under prior
proposed predictable cache coherence protocols are within the
analytical WCL bounds derived in prior works.

II. BACKGROUND

A. Chisel

Chisel [13] is a hardware-description language (HDL)
with hardware constructs embedded in Scala with features
such as object-orientation, functional programming and meta-
programming. In Chisel work-flow, the compiler converts
the Chisel hardware model into an intermediate FIRRTL
model [14] and then into a Verilog design that traditional CAD
tools for FPGAs or ASICs can synthesize.

B. Hardware cache coherence

Hardware cache coherence is a data communication mech-
anism prevalent in multicore platforms that enables cores
to simultaneously cache and access data in their private
caches [15], [16]. Cache coherence protocol is the key compo-
nent in a hardware cache coherence mechanism and consists
of rules to ensure the single-writer-multiple-reader invariant
and the data-value invariant so that all cores observe the same
value of a given datum at the same (logical) time.

The key component in a hardware cache coherence mech-
anism is the cache coherence protocol, which defines a set
of rules that maintain two variants These rules are typically
defined at the cache line granularity. A cache coherence
protocol consists of two components: (1) coherence states
that capture access permissions (read/write) of data, and (2)
state transitions between coherence states that are triggered
based on the memory activity of cores on the same data. Each
core’s cache controller implements the coherence protocol.
MapleBoard implements snooping bus-based cache coherence
protocols [16], which we find appropriate based on the core
count in current real-time multicore systems [17]–[19]. Recent
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Fig. 2: Design flow of MapleBoard.

research on predictable cache coherence protocols such as [6],
[7] also assume snooping bus.

Figure 1a shows the Modified-Shared-Invalid (MSI) cache
coherence protocol. Coherence protocols deployed in com-
mercial multicore platforms build on top of the MSI cache
coherence protocol [20], [21]. The MSI cache coherence
protocol consists of three coherence states: Modified (M),
Shared (S), and Invalid (I) [16]. A cache line in M state
means that it has read and write access permissions, and its
data contents have been modified. Only one core can have a
cache line in M state at any time instance for data correctness
[16]. A cache line in S state means that it has read access
permissions, and its data contents have not been modified.
Cores that have a cache line in S are referred to as sharers. A
cache line in I state means that it is not available in the core’s
cache or its data contents are not up-to-date. State transitions
between the coherence states are triggered on memory activity
by cores on the same cache line.

For example, consider a two-core system with cores C0
and C1 in Figure 1b. C0 issues a read request to cache
line A (Load A) that C1 has in the M state. Based on the
state transitions in MSI protocol (Figure 1a), C1 changes its
coherence state to S on observing C0’s read request (GetS),
and C0 moves from I to S state on receiving data for A;
thereby allowing both cores to subsequently read A from their
respective private caches.

Extending the MSI cache coherence protocol with transient
states enables the deployment of the protocol on a non-atomic
snooping bus, where memory requests from multiple cores
interleave and the performance improves. For example, in
MSI, when a reading core is waiting for a cache line to change
from I to S, a non-atomic snooping bus allows for another
core to request the same cache line in M before the cache
line arrives the reading core. As a result, the final state of the
reading core will be I instead of S. Adding transient states
between I and S allows the reading core to account for such
changes in the final coherence state [16].

C. Predictable hardware cache coherence

Prior works on predictable snooping bus-based hardware
cache coherence protocols [6], [7], [22] used design guidelines
and micro-architectural extensions put forth in [6]. In these
works, the snooping bus interconnect was shared between
cores and the shared memory, and this bus communicated co-
herence messages and data between cores and shared memory.
The shared snooping bus interconnect deployed a predictable
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arbitration policy to manage simultaneous bus interconnect
accesses by the cores [6], [7]. There were three main archi-
tectural extensions proposed in these prior works: (1) pending
request lookup table (PRLUT) at the shared memory, (2) per-
core pending request (PR) buffer, and (3) per-core pending
write-back (PWB) buffer [6], [7].

The PRLUT records pending requests to cache lines at the
shared memory, and ensures that multiple pending requests to
the same cache line are serviced by the shared memory in the
broadcast order. Let core C1 and core C2 request cache line
A which core C0 holds in modified state. If PRLUT is not
present, the shared memory can always service C0 and C1,
starving C2 and making the latency of memory requests for
C2 unbounded. A core’s PWB buffer records pending write-
back responses due to memory activity from other cores. Let
core C1 request cache line A, and core C2 request cache line
B. Both A and B reside in C0’s cache in modified state. If
PWB is not present, core C0 can choose to write back A and
B in any order. If core C0 chooses to write back B for core
C2, additional requests from core C2 can prevent core C0 from
writing back A, rendering the latency of memory requests for
core C1 unbounded. A core’s PR buffer records the core’s
pending requests that are ready to be broadcast on the bus.
Let core C1 requests a cache line A which core C0 holds in
modified state. If PR and PWB is not present, core C0 can
prioritize its own requests and does not write back cache line
A, starving C1 and making the latency of memory requests for
C1 unbounded. The PR and PWB buffers were implemented
within the core’s cache controller. If a core includes both
instruction and data cache, each will be equipped with a PR
and a PWB. Since a core’s requests and write-back responses
contend for bus accesses, an additional predictable arbitration
was applied in each core’s cache controller for servicing
requests and responses in the PR and PWB buffers [6]. The
real-time multicore architecture in MapleBoard incorporates
these micro-architectural extensions, and predictable cache
coherence protocols deployed on MapleBoard can make use
of these extensions.

III. MAPLEBOARD ARCHITECTURE

We describe four salient features of MapleBoard. These
features enable designers to rapidly prototype and compre-
hensively evaluate predictable cache coherence protocols in
hardware. Additionally, MapleBoard encourages exploration of
other predictable micro-architectural extensions in hardware.
Feature 1. A new domain specific language (DSL), MapleDSL,
that allows designers to rapidly describe and implement
predictable and conventional cache coherence protocols in
hardware. MapleDSL simplifies the specification, synthesis,
and validation of coherence protocols. Section IV describes
the DSL.
Feature 2. MapleBoard leverages the Chisel HDL [13], which
inherits the benefits of the Chisel ecosystem such as chisel-
testers2 [23], an open-source testing framework, and CAD
tools that enable hardware logic synthesis. CAD synthesis
tools can then be used to target FPGAs or ASICs.

Feature 3. A configurable and synthesizable real-time RISC-V
multicore architecture with a memory hierarchy and real-time
bus interconnect. Tools in MapleBoard seamlessly integrate
the predictable cache coherence protocols with the real-time
multicore architecture. Designers can synthesize MapleBoard
into hardware logic, and evaluate key properties such as area,
power, and operating frequency. Section III-A describes the
multicore model in MapleBoard.
Feature 4. A software runtime component that allows de-
signers to execute single-threaded and multi-threaded appli-
cations on the MapleBoard. Designers can comprehensively
evaluate and validate runtime properties such as performance
and observed WCL bounds. The software runtime component
emulates key Linux operating system (OS) calls. Section III-B
describes MapleBoard’s software runtime component.

Figure 2 shows the design flow of MapleBoard. A de-
signer describes micro-architectural extensions in Chisel, and
integrates them with the multicore architecture provided by
MapleBoard ( 1 ). As an example, MapleDSL is a Chisel-
based tool in MapleBoard to specify predictable cache coher-
ence protocols. Designers use tools provided by the Chisel
framework to generate a Verilog design that can be simulated
through Verilog simulators for design verification ( 2 ). Note
that MapleBoard can be extended to use FireSim [24], a
FPGA-accelerated hardware simulation framework. Designers
use FPGA synthesis tools to generate logic for the extended
multicore architecture ( 3 ). We only target FPGAs in this
work, but ASICs can also be targeted. We successfully syn-
thesized MapleBoard on the reconfigurable fabric in the Xilinx
Virtex Ultrascale+ VCU1525 board. MapleBoard uses the
RISC-V compiler toolchain [25] to convert software applica-
tions written in C/C++ to a static application binary executable
( 4 ). The software runtime component in MapleBoard enables
application execution on the hardware.

A. Hardware components of MapleBoard

MapleBoard has four main hardware components.
Core architecture. MapleBoard deploys RISC-V cores that
implement the RV64IA instruction-set architecture. Each
RISC-V core implements an in-order pipeline with support
for memory, arithmetic, and atomic instructions. In-order cores
are chosen as they are predictable over dynamically scheduled
cores [26]. However, other predictable core architectures such
as PRET [27] or SIC [26], could trivially be dropped in
as replacements. The provided RISC-V core also includes a
criticality register (CR) that records the criticality level of the
application executing on the core. Each RISC-V core has a
split level one (L1) instruction and data cache. The number of
cores deployed in MapleBoard is configurable.
Memory hierarchy. MapleBoard has a two-level memory
hierarchy with a private cache level per core (L1) and
the shared main-memory. When synthesizing MapleBoard on
FPGAs, the shared main-memory is the on-board memory
module; otherwise, for simulation purposes, the shared main-
memory is a component with constant latency. Caches are
byte-addressable, and operate at 64-byte cache line granularity
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by default. Designers can configure the cache capacity, cache
line size, and associativity.

Each cache has a cache controller that manages the contents
of the cache’s tag and data arrays, and handles a core’s
memory request to the cache. The shared memory controller
(SMC) manages data contents in the shared memory, and
handles data movement between the shared main-memory and
cores’ caches. When the shared main-memory is DRAM, the
DRAM controller manages data movement between DRAM
memory modules and the cores’ caches. MapleBoard does
not include a DRAM controller component, and relies on the
availability of a DRAM controller model (hard or soft cores)
on the target FPGA board.
Bus interconnect architecture. Cores communicate with each
other and the shared memory via a bus interconnect. The
bus interconnect communicates memory requests and its cor-
responding coherence messages, and data responses between
the cores and shared memory. Currently, MapleBoard supports
three interconnect configurations as shown in Figure 3: (1)
atomic, (2) shared, and (3) dedicated. In all configurations, the
interconnect has a request bus which communicates memory
and coherence messages that is implemented as a shared
snooping bus interconnect. Multiple accesses to the shared
request bus are managed by a predictable bus arbitration
policy. MapleBoard provides the following predictable bus
arbitration policies: (1) round-robin (RR), (2) time division
multiplexing (TDM), (3) weighted TDM, and (4) weighted
TDM augmented with RR [28]. Designers can add new bus
arbitration policies in MapleBoard based on their requirements.

The atomic and shared bus share the same representation
in Figure 3b where both are equipped with a shared data bus.
The difference between atomic and shared bus is that atomic
bus processes memory transactions atomically: other caches’
requests are blocked until the current request is completed, but
shared bus allows non-atomic transactions on the bus where
requests can interleave and are serviced when other cores stall
for data response.

The key difference between the shared and dedicated config-
urations for the bus interconnects is in organization of the data
bus. As shown in Figure 3b, in the shared configuration, cores
and the shared memory communicate data over a shared bus
interconnect. Concurrent accesses to the data bus interconnect
are managed by a predictable bus arbitration policy similar to
the request bus. Note that for this configuration, the arbitration
schedule for the data bus is the same as that of the request
bus. For the dedicated configuration shown in Figure 3c each

private cache has two separate data buses: one data bus to
receive data from shared memory, and another data bus to
send data to the shared memory. The dedicated configuration
has no need for an arbitration policy for data.
Cache coherence mechanism. The cores’ cache controllers
implement the cache coherence protocol that is responsible
for maintaining a coherent view of data. MapleBoard can
deploy both conventional cache coherence protocol such as the
MSI or MESI protocols [16] or predictable cache coherence
protocols such as PMSI [6] and CARP [7]. For deploying
predictable cache coherence protocols, MapleBoard provides
the necessary hardware structures discussed in [6] that were
reviewed in section II-C such as the per-core PR and PWB
buffers, and the PRLUT at the shared memory. Section IV
describes MapleDSL, a DSL for designing cache coherence
protocols in MapleBoard. Currently, we provide a choice of
the following cache coherence protocols in MapleBoard: (1)
MSI [16], (2) MESI [16], (3) PMSI [6], (4) PMESI [22], and
(5) CARP [7].
Differences from prior works Compared to prior predictable
coherence protocol efforts such as PMSI and CARP [6], [7],
which are evaluated using micro-architecture simulators, this
work differs in two ways. First, while prior works allocated
at least one time slot to each core and neglected instruction
cache accesses in their designs over the interconnects, this
work allocates at least two slots to each core: one slot for the
read-only instruction cache and one slot for the read-write data
cache. Second, to allow for the Linux host supporting system
calls to perform predictable memory accesses, we allocate one
data cache to the host and allocate one slot for the data cache
in the arbitration schedule.

Prior works [6], [7] overlooked an issue of sharing a
slot between instruction and data cache. The issue is that
there are interferences between instruction fetching and data
access from the same core and such interferences are out
of the scope of the analyses in these works. Note that such
interferences do not invalidate the timing analyses in prior
works, but requires extra investigation when integrating the
cache with a predictable pipelined processor such as SIC [26]
whose analysis takes as input the end-to-end latency of cache
accesses. Moreover, sharing a slot between instruction and data
cache requires extra logic to differentiate bus data responses
for instruction and data. A more pragmatic hardware approach
is to have separate slots for instruction cache and data cache,
which eliminates such implicit interference and results in sim-
pler hardware implementation. Our extended WCL analyses
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take into account such changes to prior works.

B. Software component of MapleBoard

The software runtime library consists of implementations
of system calls used by applications. Examples include those
used in threading libraries to create and manage multiple
thread contexts, file management operations to open and close
files, and memory management operations to allocate memory
regions. When the application execution encounters a system
call, MapleBoard traps the system call, and emulates it using
the implementation in the software runtime library. Design-
ers can add software implementations of system calls into
MapleBoard’s software runtime library to enable execution of
wider variety of applications. Currently, MapleBoard emulates
system calls used in the pthread library, and memory
management system calls. For other system calls, MapleBoard
relies on a compute system that runs a Linux OS, which we
refer to as the host, to execute system calls on behalf of
MapleBoard. For the Xilinx Virtex Ultrascale+ VCU1525, we
designed a custom communication interface between Maple-
Board and the compute host using the shared memory. The
MapleBoard services memory requests of host by the same
predictable cache as other cores to ensure predictability per
memory request and cache coherency among the host and
other cores. In MapleBoard, the system calls delegated to the
host mostly set up the application data before the execution of
the program and has minimal effects on the execution of the
programs. In an in-field deployment, one of the cores can play
the role of the host with proper runtime libraries that provide
full support for time management, I/O and drivers for other
components such as a screen. These functionalities are not in
the scope of this work.

IV. MAPLEDSL: A DSL FOR DESCRIBING CACHE
COHERENCE PROTOCOLS

MapleDSL is a novel domain specific language (DSL) for
specifying cache coherence protocols for MapleBoard. De-
signers can specify both predictable cache coherence pro-
tocols and conventional high-performance cache coherence
protocols with MapleDSL. While we show the feasibility of
MapleDSL describing conventional cache coherence protocols
in Section VI, our focus in this work is on predictable cache
coherence protocols.

A. MapleDSL compiler flow

Figure 4 shows the MapleDSL compiler flow. The MapleDSL
compiler takes as input the protocol specification written
in MapleDSL, and outputs the hardware implementation of
the protocol in Chisel. The input protocol specification is
a set of Scala files that specify protocol states and transi-
tions between states. Section IV-C describes the format for
specifying protocol state transitions in MapleDSL. For each
protocol state transition, the MapleDSL compiler generates
one Chisel when/elsewhen branch which is equivalent to an
if/else-if branch in Verilog. The branch condition checks for
the corresponding initial coherence state and an observed

Shared memory protocol.scala Logic

L1-$ protocol.scala

Event(Load, I) -> Action(
State(IS_AD),   
MSHR.insertCoreRequest(),
PR.insert(GetS)

),

Event(Store, I) -> ...
. . .

Chisel coherence table
when(...) { ... }
.elsewhen(state==0 &&
     event==1){
 next_state := 1;
 mshr_insert := 1;
 pr_insert_state := 2;
 pr_insert := 1;
}.otherwise {
 ...
}

MapleDSL
compiler

Chisel +
CAD tool

state
event

next_state
mshr_insert

pr_insert_state
pr_insert

...

Fig. 4: MapleDSL compiler flow.

event. Statements in the branch body drive control and data
signals to inform the hardware of actions to perform. The
transformed transitions form a combinational Chisel coherence
table module, which is synthesized to hardware using CAD
tools.

B. MapleDSL features

Taking inspiration from SLICC, a coherence protocol DSL
in gem5 simulator [12], MapleDSL has three key features
that fill the gaps between SLICC DSL and real-time systems’
requirements.
Criticality level of memory requests. MapleDSL allows
designers to specify state transitions for a cache line based
on the relative criticality level of remote memory requests
to the same cache line. We define relative criticality level
as the difference in criticality levels of a core observing a
remote memory request and the remote core that broadcasted
the memory request. This feature allows specifying predictable
cache coherence protocols for mixed criticality systems (MCS),
which are common in avionics and automotive domains [29].
Applications running on MCS have different criticality lev-
els, which in turn have different temporal and certification
requirements [29]. There are three possible relative criticality
levels: (1) LOCRIT: the criticality level of the remote core’s
memory request is lower than that of the core observing the
memory request on the bus, (2) HICRIT: the criticality level
of the remote core’s memory request is higher than that of
the core observing the memory request on the bus, and (3)
SAMECRIT: the criticality levels of the core observing the
remote memory request and the remote core that broadcasted
the memory request are the same. Since MapleBoard and
MapleDSL are pure Scala, MapleBoard and MapleDSL can be
extended to support other variants of criticality level specifica-
tions such as ASIL in ISO-26262 and safety-critical levels in
DO178. On the other hand, the SLICC DSL allows designers
to specify state transitions from a coherence state based on
only the remote memory request type. As a result, predictable
cache coherence protocols for MCS such as CARP [7] can be
specified in MapleDSL, whereas specifying the same in SLICC
DSL is a challenge.
Access to hardware structures. Hardware structures in
MapleBoard that participate in cache coherence operations
are exposed to MapleDSL for designers to use in their pro-
tocol specifications. This allows the designer to control the
management of memory requests and responses based on the
protocol specifications. For example, consider a specification
that requires a core to prioritize write-back responses based on
the criticality level of the remote core’s memory request that
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TABLE I: LOCs of protocol specification.
Protocol LOCs in MapleDSL LOCs in Verilog % reduction

PMSI 63 518 91%
PMESI 76 1009 94%
CARP 133 981 90%

triggers a write-back. In MapleDSL, a protocol designer can
realize this specification by defining multiple PWBs based on
the criticality level, and queuing up write-back responses to
cache lines based on the criticality level of the remote core’s
memory request 2. On the other hand, the SLICC DSL does
not expose the hardware structures that feature in the cache
coherence operation. In SLICC DSL, management of memory
requests and responses in the cache coherence protocol is
done transparent to the protocol designer. As a result, deriving
WCL bounds requires non-trivial investigation of the hardware
structures and their management.
Generation of synthesizable HDL. Built upon Chisel,
MapleDSL is designed to describe the actions taken by the
hardware components in MapleBoard. For example, state tran-
sitions in MapleDSL have direct access to hardware com-
ponents such as PR, PWB and PRLUT that map directly
to synthesizable HDL modules. Actions in state transitions
map directly to control and data signals of the corresponding
hardware components. On the other hand, the state transitions
in SLICC only have access to components that model real
hardware. These components, such as the TBETable, are pure
software behavioral description of their hardware counterparts.
Moreover, the actions in SLICC state transitions are designed
to be translated into C++ code and it requires non-trivial
transformation from software-based code to HDL description.
As a result, the compiler of MapleDSL can generate synthesiz-
able HDL from coherence protocols described in MapleDSL,
a hardware aware DSL.

C. Protocol specifications in MapleDSL

A protocol state transition for a cache line in MapleDSL has
two components: (1) Event and (2) Actions.
Event. The Event takes as input observed events on the bus
(coherence messages or data), the current coherence state
and an optional relative criticality level. During application
execution, a core’s cache controller computes the relative
criticality level based on its criticality level and the criticality
level of the observed coherence message, and selects the
appropriate event based on the relative criticality level. Each
cache controller stores its criticality in a criticality register.
The request broadcasted on the bus includes the criticality of
the issuing cache controller.
Actions. For an event on a cache line, the Actions describe
the set of actions to be executed by cache or shared memory
controllers, and the next coherence state the cache line tran-
sitions to. Controller actions operate on hardware structures
in MapleBoard such as the per-core PR and PWB buffers,

2Note that the arbitration policy across multiple PWBs must be described
separately from the protocol specification.

// PMSI private cache protocol transitions
class PMSICacheCoherence extends CoherenceTableGenerator () { Map (

Event(Data,  IM_D)-> Action(State(M), MSHR.cleanAndRespond(), 
TAG.insert(dirty=true), PR.remove(),
DATA.update()),

// More transitions ...
)}

// ...

Fig. 5: PMSI [6] specification in MapleDSL.

per-core miss status handling registers (MSHR), tag and data
arrays of caches, and shared memory PRLUT. MapleDSL also
allows a designer to define new hardware structures and add
actions on these newly defined hardware structures.
Illustrative example. Figure 5 shows a protocol transi-
tions in the private cache for the PMSI protocol [6] in
MapleDSL. The private cache transitions are encapsulated
in PMSICacheCoherenceTable. State transition high-
lighted in Figure 5 is triggered when data response is ob-
served on bus and the cache line is currently in IM_D
state (Event(Data, IM_D)). A cache line in IM_D state
denotes a store request on the cache line that is waiting
for data. On receiving the data, the cache controller records
the data and completes its store request with four controller
actions for this state transition: (1) the outstanding request in
the MSHR is removed and the data is sent to the core with
cleanAndResponse(), (2) the data is recorded in a cache
line and is marked as dirty (TAG.insert(dirty=true),
DATA.update()), and (3) remove the pending request from
the PR (PR.remove()). According to the PMSI protocol
specifications, a cache line in IM_D state changes to M on
receiving data. These controller actions and the final coherence
state (M) are specified in the actions as shown in Figure 5.
The coherence protocol state transitions in the shared memory
controller is defined in a similar way.

D. Conciseness of MapleDSL

We use lines of code (LOCs) to provide an abstract perspec-
tive of the conciseness of MapleDSL. Table I shows the LOCs
to describe the PMSI, PMESI, and CARP implementations in
MapleDSL, and the corresponding lines of code in the gener-
ated Verilog model that describes the protocol implementation
in hardware. We agree that there are differences between the
grammar of Chisel and Verilog where the latter only provides
limited support for crafting a DSL, and it is challenging to
compare the two languages fairly. Nevertheless, we use lines
of code to provide an abstract perspective on the conciseness
of MapleDSL.

Note that it takes around a minute to generate Verilog for a
4-core PMSI configuration from Chisel, and the compilation
of the PMSI protocol takes less than a second. The Verilog
model is generated from the MapleDSL model by the Chisel
compiler. Across all three implementations, MapleDSL offers
more potential for rapid protocol design (91% average re-
duction in LOCs) compared to specifying the same protocol
as a Verilog model. Note that the generated Verilog models
for a coherence protocol specification defined in MapleDSL
are the same across configurations with different core counts.
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On average, MapleDSL reduces the LOCs needed to specify
protocol specification by more than 91% compared to a Verilog
model.

V. CASE STUDY USING MAPLEBOARD

MapleBoard enables designers to explore designs on both
predictable cache coherence protocols and the broader scope of
the memory systems. To illustrate the use of MapleBoard, we
present a case study that explores the relationship between the
WCL of a memory request under predictable cache coherence
protocols and the communication bus configurations.

A. Exploring data bus configurations for predictable cache
coherence protocols

Cache coherence protocols communicate data and coher-
ence messages between cores and shared memory via bus in-
terconnects. For performance and hardware overhead consider-
ations, these buses have different design configurations such as
width, atomicity, and hardware distribution. In this section, we
explore the impact of data bus hardware distribution (shared
and dedicated buses) and atomicity (atomic and non-atomic)
on the WCL of a memory request under predicable cache
coherence protocols using MapleBoard. A key takeaway from
our exploration is that predictable cache coherence protocols
deployed on non-atomic dedicated bus configurations where
each core has dedicated non-atomic data buses to the shared
memory have lower WCL of memory requests and better
application performance than those deployed on atomic and
non-atomic shared bus configuration.

1) Data bus configurations: In this case study, we explore
three data bus configurations.
Atomic bus (ATM): Figure 3a shows the configuration of
ATM. In this configuration, cores communicate data with the
shared memory through a shared data bus interconnect. Fur-
thermore, this bus configuration process memory transactions
from cores atomically. This means that the bus configuration
prevents a core from communicating coherence messages and
data on the shared buses before the current request that is
using the buses completes [16].
Shared data bus (SDB): Figure 3b shows the configuration
of SDB. SDB allows non-atomic transactions on the bus
where requests can interleave and are serviced when other
cores stall for data response, providing improved performance.
Simultaneous accesses to the shared data bus are resolved with
a predictable bus arbitration policy. Prior work by Hassan et
al. [6], Kaushik et al [7], and Sritharan et al. [8] deployed
predictable cache coherence protocols on SDB.
Dedicated data buses per core (DDB): In DDB configura-
tion, each core has two dedicated data buses (one for each
direction) for data communication with the shared memory.
One bus allows the core to send data to the shared memory
(dirty data write-backs), and the other bus allows the shared
memory to send data responses to the core. Figure 3c shows
the configuration of DDB. This configuration allows a core
to send data to the shared memory and receive data from the
shared memory at any time instance.

2) Preliminaries: The WCL of a memory request under
a predictable cache coherence protocol has three compo-
nents [7]: (1) the latency for a core to broadcast its request
on the request bus, or the request latency, (2) the latency
for another core with an updated copy of the requested data
and/or the shared memory controller to place the up-to-date
data on the data bus, or the communication latency, and (3)
the latency of the data response to arrive at the requesting
core, or the response latency. The latency analysis uses the
PMSI predictable cache coherence protocol [6], and assumes
the shared bus interconnect deploys a TDM arbitration policy
that allocates one slot to each cache in the multicore platform.
This means that each core is allocated two slots: one slot
for its L1 data cache and another slot for its L1 instruction
cache. Note that the focus of our case study is to explore the
communication bus configurations and to show the benefits of
deploying DDB configuration. We use the PMSI protocol as
an example and omit the analysis of other coherence protocols.

For this analysis, we use the following symbols:

• Lacc: WCL to access the shared memory. We rely on
prior works such as [30], [31] for deriving this value.

• N : The number of cores in the multicore platform.
• S: The TDM slot width. The slot width is large enough

to complete one read or write memory operation between
the core and shared memory. This slot width takes into
account the latency to broadcast coherence messages and
shared memory data communication.

• cua: Core under analysis.

3) High-level overview of latency analysis: We summarize
the WCL for the PMSI [6], PMESI [22] and CARP [7]
predictable cache coherence protocols deployed on different
bus configurations in Table II. These protocols were deployed
on the SDB bus configuration, and we refer the readers to [6],
[7], [22] for the derivation of WCL of memory requests under
these protocols. The following lemmas and theorems derive the
WCL of a memory request under the PMSI protocol deployed
on the DDB configuration. We refer to the PMSI protocol
deployed on DDB configuration as PMSI-DDB. We use the
notation A to denote a cache line with memory address A.

For the protocols deployed on SDB configuration, the worst-
case scenario is when a request from cua to A waits for all
prior cores to complete their write requests to A [6], [22].
Each prior core must wait for its allocated slot to receive A
and modify the data contents of A and then must wait for
another allocated slot to write back the updated data contents
of A to the shared memory. A core writes back the updated
data contents of A to the shared memory as a response on
observing another core’s request to A. On the other hand,
for protocols deployed on DDB configuration, a core can
write back the updated data contents of A to shared memory
immediately on observing another core’s request to A. Unlike
the SDB configuration, dedicated data buses between a core
and the shared memory eliminate the need for any arbitration
and hence, there is no arbitration latency incurred. Thus,
compared to SDB, memory requests under protocols deployed
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on DDB configuration exhibit lower WCL. Note that in DDB
configuration, the shared memory handles simultaneous write-
back requests due to dirty cache line replacements in a round-
robin fashion and performs write-back requests in the same
order as they are accepted.

Under protocols deployed on ATM configuration, a core is
guaranteed to complete its memory request in its allocated
slot. To achieve this, each allocated time slot is large enough
to perform three operations: (1) request broadcast, (2) write-
back response from another core due to request, and (3) data
response from shared memory to requesting core. As a result,
the slot width in ATM is larger than that in SDB and DDB.

4) Latency analysis: We present the latency analysis of
PMSI-DDB. Among the three different latency components
described in Section V-A2, we focus on the worst-case com-
munication latency analysis. The worst-case communication
latency is dependent on the memory activity from other cores
and dominates the total WCL [6], [7], [22]. Lemma V.1
describes the worst-case scenario that results in the worst-case
communication latency and Lemma V.2 expresses the worst-
case communication latency.

Lemma V.1. A memory request to A from cua under PMSI-
DDB exhibits the WCL when all data cache controllers other
than the one of cua broadcast write requests to A and all in-
struction cache controllers other than the one of cua broadcast
read requests to B before cua broadcasts its request to A, and
the request to A from each core’s data cache causes an eviction
of a dirty cache line in their respective private caches.

Proof. In PMSI-DDB, a core that has a cache line in M state
means that the core has modified the cache line data contents.
As a result, a core performs a data write-back of a cache
line in M state to shared memory on a cache line eviction
due to replacement or on observing a remote core’s read or
write request. Since each core is allocated two slots (one for
instruction access and the other for data access), the worst-
case scenario is when the remaining N − 1 cores broadcast
data write requests to A and instruction read requests to B
before cua’s request to A. Furthermore, in the worst-case, each
core’s request to A causes an eviction to a cache line that
is also in M state. Recall that the dedicated data buses in
DDB configuration enable cores to write back dirty cache lines
immediately. As a result, cua’s memory request to A that is in
the M state in another core’s cache must wait for four memory
operations to complete: (1) N − 1 write-backs of replaced
cache lines due to requests to A from remaining cores, (2)
N − 1 updates and write-backs of A to shared memory, (3)
N −1 instruction accesses to B from remaining cores, and (4)
the shared memory to send the updated A to cua.

Lemma V.2. For DDB configuration, the worst-case commu-
nication latency of a memory request by cua is given by:

WCLComm(cua) =
(
4×N−b (2N + 1)× S)

Lacc
c
)
×Lacc+Lacc

(1)

Proof. From the worst-case scenario described in Lemma V.1,
each prior core communicates with the shared memory four
times (instruction access to B, write-back of evicted dirty line
due to A request, receive A from shared memory, and write-
back of A). As a result, the total latency across all N−1 cores
is 4 × (N − 1) × Lacc cycles. Since MapleBoard relies on a
host for handling system calls (Section III-B), the arbitration
schedule allocates slots to the host for predictable handling of
system calls. As a result, the total latency including the host
is 4×N × Lacc cycles.

However, cua does not wait for 4×N×Lacc cycles to receive
A as dedicated data buses allow cores to write back to shared
memory immediately. As a result, some of these write-back
responses from other cores complete before cua’s request to A
is broadcasted. To compute the number of memory requests
from other cores that are pending after cua’s request to A is
broadcasted, we first compute the number of write-back re-
sponses and data requests that can complete in a TDM period.
This is computed as b (2N+1)×S

Lacc c. Therefore, the remaining
number of write-back responses and data requests from other
cores that are pending after cua broadcasts its request is(
4×N −b (2N+1)×S

Lacc c
)

. In the worst-case, cua’s request to A
also causes a replacement to a dirty cache line due to capacity
miss, which triggers a write-back to shared memory. Hence,
WCLComm(cua) =

(
4×N − b (2N+1)×S

Lacc c
)
× Lacc + Lacc.

Theorem V.3. For DDB-configuration, the total worst-case
latency of a memory request by cua is given by:

WCLTotal(cua) = WCLReq(cua) +WCLComm(cua)

+WCLResp(cua)

= (2N + 1)× S +
(
4N − b (2N + 1)× S

Lacc
c+ 2

)
× Lacc (2)

Remarks The WCLTotal of a memory request under PMSI-
DDB grows linearly with the number of cores (N ). On the
other hand, the WCLTotal of a memory request under PMSI-
SDB grows quadratically with N as shown in Table II. This
is because a shared data bus between cores and the shared
memory (SDB configuration) forces each core to wait for their
allocated time slot on the data bus to complete their write-back
response to shared memory. As a result, a memory request
under PMSI-DDB has lower WCL than PMSI-SDB. Figure 6
shows the analytical WCL bounds for PMSI-DDB, PMSI-SDB
and PMSI-ATM when the number of cores changes and S =
256 cycles and Lacc = 150 cycles.

B. Other design space exploration avenues with MapleBoard

In the preceding subsection, we presented one case study
to explore the impact of different hardware configurations
on the WCL guarantees under predictable hardware cache
coherence mechanisms. While the tools discussed in the work
such as MapleDSL allow for rich design space exploration of
predictable hardware cache coherence protocols, MapleBoard
enables several other areas for design space exploration that
may be of interest to real-time system designers and users.
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TABLE II: WCLTotal(cua) for ATM, SDB and DDB

Protocol ATM SDB DDB

PMSI (6N + 5)× S + Lacc 2(2N + 1)(N + 2)× S + Lacc (2N + 1)× S + (4N − b (2N+1)×S
Lacc c+ 2)× Lacc

PMESI (6N + 5)× S + Lacc 2(2N + 1)(N + 2)× S + Lacc (2N + 1)× S + (4N − b (2N+1)×S
Lacc c+ 2)× Lacc

CARP - 2(2N + 1)(N + 2)× S + Lacc -
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Fig. 6: The analytical WCL bounds of DDB is lower than the
analytical WCL bounds of ATM and SDB for the same number of
cores.

This is because MapleBoard is fully customizable and re-
searchers can customize MapleBoard at different levels to fit
their design space exploration interests. Some potential ex-
ploration avenues with MapleBoard include predictability and
performance trade-offs of shared memory arbitration schemes,
and cache update and replacement policies.

VI. EVALUATION

We implemented conventional cache coherence protocols
MSI, MESI [16] and predictable cache coherence protocols
PMSI, PMESI, CARP [6], [7] in MapleBoard, and synthesized
their implementations to hardware logic on the on-board
FPGA in the Xilinx Virtex Ultrascale+ VCU1525 board. The
operating frequency of the resulting MapleBoard implementa-
tions is 100MHz. In Section VI-D, we describe the hardware
utilization of these protocol implementations for different core
counts (2, 4, and 8 cores) and data bus configurations (shared
and dedicated configurations). We use the notation [P.N.B]
to describe the configuration where P is the coherence proto-
col, N is the core count, and B is the data bus configuration.
Possible values for P are MSI, MESI, PMSI, PMESI and
CARP. Possible values for B are Shared and Dedicated for
shared and dedicated data bus configurations, respectively. For
example, [PMSI.2.SDB] represents the configuration of a
2-core systems deployed with PMSI coherence protocol and
SDB configuration. In Section VI-A, we execute benchmarks
from the SPLASH-2 benchmark and synthetic workloads, and
report the total execution time and the observed WCL. We
show that the observed WCLs across all implementations
are within their respective analytical WCL bounds. For all

implementations, the private caches are implemented as 4-way
set associative caches, and the shared buses deploy TDM bus
arbitration policies with slot width set to 256 cycles. For
the PMSI and PMESI implementations, we use an arbitration
schedule that allocates two slots to each core: one for the
instruction cache and one for the data cache. For the CARP
implementation, we mark one core as non-critical, and mark
the other cores as critical for synthetic benchmarks. The
arbitration schedule in CARP allocates slots to cores marked
as critical and memory requests from non-critical cores are
serviced in unused allocated slots (slack slots).

A. SPLASH-2 and synthetic workloads

We execute the multi-threaded benchmarks in the SPLASH-
2 benchmark suite, and synthetic workloads on the different
MapleBoard implementations [32]. We executed these bench-
marks on the MapleBoard implementations to completion, and
we ensured the correctness of the multi-threaded computations
using the in-built single-threaded verification routines in the
SPLASH-2 benchmark suite. To highlight the predictability
properties of MapleBoard, we designed a synthetic workload
that stresses the protocol implementations and exercised the
worst-case scenarios for the different protocol implementa-
tions. The synthetic workload forced all cores to issue memory
requests to the same memory location at the same time.

We derive the WCL memory request latency bounds for the
protocol implementations on the shared data bus, the dedi-
cated data bus and atomic data bus configurations taking into
account the multicore model on MapleBoard. Sections VI-A1
and VI-A2 presents the total execution time and observed
worst-case memory request latency for the SPLASH-2 and
synthetic workloads for different protocol implementations on
MapleBoard respectively.

1) Observed WCL: Figure 7 shows the observed WCL for
the SPLASH-2 benchmarks (Figures 7a-c). The observed total
WCL is the maximum memory request latency to shared data
across all cores. Note that the SPLASH-2 benchmarks have
thread barriers that require all threads to update before making
forward progress. Hence, all cores that execute a SPLASH-2
benchmark must be able to read and write to shared data for
correct benchmark execution. In the CARP implementation,
non-critical cores cannot write to shared data [7], so all cores
are critical cores in our evaluation for SPLASH-2 benchmarks.
Observations. We make two observations. First, for all bench-
marks (SPLASH-2 and synthetic), the observed WCL is within
the analytical WCL bounds across all implementations. We
also confirmed that the individual latency components that
make up the WCL such as the arbitration latency, commu-
nication latency, and data response latency are within their
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Fig. 7: Observed WCL for SPLASH-2 workloads for different protocol implementations on MapleBoard.
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Fig. 8: Execution time for SPLASH-2 benchmarks of MapleBoard.

respective analytical WCL bounds across all implementations.
Note that for synthetic workloads on CARP, we report the
observed WCL for the critical cores; non-critical cores are not
provided with predictability guarantees [7].

Second, the disparity between the observed WCL and ana-
lytical WCL bound in the SPLASH-2 benchmarks is because
of the following two reasons. (1) The SPLASH-2 benchmarks
partition the data on which computations are performed across
multiple cores, which minimizes the data sharing between
cores during execution. (2) The host does not perform write
requests to the shared data at the same time as the other
cores to stress the worst-case scenario. On the other hand,
the synthetic benchmark stresses the worst-case scenario as
shown in Table III. Note that for the synthetic benchmark,
we ensure that the host does not access the same cache lines
operated on the cores. Hence, the analytical WCL bounds for
the synthetic benchmark does not include the host.

2) Total execution time: Figure 8 shows the execution time
of SPLASH-2 benchmarks on the PMSI and PMESI protocols
with the shared, dedicated and atomic data bus configurations.
We also include MSI and MESI deployed on shared bus.
Recall from Section III-A that each core has two dedicated
data buses to the shared memory in the dedicated data bus
configuration. The atomic bus only processes the next memory
transaction after current memory transaction is finished. As
a result, the DDB configuration trades hardware cost for
improved performance over the SDB configuration.
Observations. We make two observations. First, across all
benchmarks, the DDB configurations for each protocol imple-
mentation performs better than the corresponding SDB config-
uration. For example, for PMSI and PMESI implementations
with 4-cores, the DDB configurations offer 2.59% and 13.89%
average performance improvements over the corresponding

SDB configurations respectively. This is because the DDB
configuration eliminates any arbitration delay to communicate
data between the shared memory and cores. Thus, the shared
memory can send the requested data to cores and cores can
write back data to the shared memory at any time instance.
The SDB configuration requires cores to communicate data on
the shared data bus in their allocated time slots.

Second, for the SDB data bus configuration, the PMESI
implementation exhibits higher execution time compared to
the PMSI implementation (12.84% on average). In PMESI,
a core’s read request receives the requested cache line in the
exclusive state (E) if it is the only core that will have the cache
line in its private cache. As a result, the core with a cache line
in the E state can complete a write request to the cache line
without broadcasting any coherence messages. To this end, the
shared memory marks a cache line it sends to a core in the E
state as dirty. As a consequence, an eviction of a cache line
in the E state triggers a write-back even though the core did
not update the data contents of the cache line. We observe
that evictions of cache lines in the E state in the instruction
and data caches in the PMESI implementation increase the
execution time of benchmarks in the PMESI implementation.
On the other hand, the PMSI implementation receives cache
lines due to read requests in the S state, and evictions of cache
lines in S state do not trigger write-backs. DDB minimizes
this performance drawback of PMESI implementation as the
write-backs need not wait for the allocated time slots to
complete. Third, the ATM provides the worst performance
across the benchmarks despite providing worst-case latency
that scales linearly with N . The reason for the degraded
performance is a result of absence of interleaving requests.
Moreover, the latency for every request is similar and close to
the worst-case latency. Finally, the MSI and MESI provides
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TABLE III: Observed WCL and Analytical WCL for synthetic benchmark on MapleBoard in cycles.
Core # SDB WCL SDB Observed WCL DDB WCL DDB Observed WCL ATM WCL ATM Observed WCL

PMSI PMESI CARP PMSI PMESI PMSI PMESI

2 7830 5227 5235 3948 1580 1462 1471 4502 4457 4459
4 23190 23021 16200 18455 2604 2453 2450 7574 7536 7536
8 78486 69731 78445 60913 4802 4539 4513 13718 13683 13683

the best average performance across all the implementations.
In MSI and MESI, the memory requests are serviced with first-
come-first-serve arbitration. Unlike PMSI and PMESI with
predictable arbitration where each core has the same chance to
be serviced, cores with more memory requests are more likely
to be serviced as they can issue the request more frequently
and do not suffer from arbitration delays.

B. Discussions on bus configurations

1) Shared data bus and dedicated data bus: In Section V,
we analytically show that the WCL of a memory request under
PMSI or PMESI deployed on the DDB configuration is lower
than the WCL of a memory reqeust under PMSI and PMESI
deployed on the SDB configuration. In Table III, the observed
WCLs of memory requests under PMSI and PMESI deployed
on SDB and DDB are within the analytical WCLs for 2, 4
and 8 cores. For PMSI and PMESI, the observed WCLs of
memory requests on DDB are lower compared to SDB for 2,
4 and 8-core setup. Thus, our results empirically show that the
WCL of a memory request on DDB is lower than the WCL
of a memory request on SDB.

2) Atomic data bus and dedicated data bus: In Section V,
we show the WCLs of memory requests on ATM and on
SDB for PMSI grow linearly with N . However, the WCL
of a memory request on DDB is lower than ATM, which we
validate with empirical data. In Table III, the PMSI deployed
on DDB shows lower observed WCLs than the PMSI with
ATM for 2, 4 and 8 cores respectively.

C. Protocol validation

MapleDSL compiler maps each transition in MapleDSL
directly to one branch in the generated combinational logic. As
a result, MapleDSL compiler accurately translates MapleDSL
specification into a coherence state machine.

We validated the protocols implemented in our platform
using a variety of methods. (1) We generate random requests
in Chisel to verify the correctness of the implementation by
running RTL simulation. (2) We use hand-crafted synthetic
micro-benchmarks as state transition coverage tests in Chisel
by running RTL simulation. During testing, we record every
exercised state transitions and make sure that all valid transi-
tions are exercised and that invalid transitions are not present.
(3) We integrate the platform in QEMU [33] to perform
full-system RTL simulation. The full-system simulation is
capable of running pthread application. (4) We synthesize the
platform on an FPGA and the platform can successfully exe-
cute SPLASH-2 benchmarks and various micro-benchmarks.
Throughout all the steps of validation, the worst-case observed
latencies are within the calculated bounds for predictable cache

coherence protocols. For conventional cache coherence proto-
cols, the worst-case observed latencies exceed the calculated
bounds for their respective counterpart.

D. Hardware utilization

Table IV shows the hardware utilization of MapleBoard
implementations between the RISC-V cores, private caches,
buses, and shared memory controller for different configura-
tions.
Observations. The row highlighted in gray shows the hard-
ware utilization of private cache in PMSI with SDB and DDB
configurations across 2, 4 and 8 cores. We observed that
the private caches account for most of the LUT utilization,
and is the largest hardware component in MapleBoard. Note
that while a cache holds the data content in BRAMs, it
also contains logic such as PR, PWB that utilize LUTs.
Caches consuming most of the resources applies to all other
implementations. The shared memory controller implemen-
tation is sensitive to the data bus configurations where the
shared memory controller has higher LUT utilization in the
dedicated data bus configuration. Cells highlighted in blue
shows an example comparing the shared memory controller
of [PMSI.2.SDB] and [PMSI.2.DDB]. This is because
the dedicated data bus configuration adds more input and
output port interfaces to the shared memory compared to the
shared data bus configuration. The bus interconnects (request
and data buses) have low hardware utilization across all
implementations, and accounts for less than 2% of the total
hardware logic of MapleBoard. The PMESI implementation
has close resource utilization compared to PMSI since the
differences between the implementation of PMESI and PMSI
are only in the coherence table. The CARP implementation
has higher hardware utilization than PMSI for 4 and 8 cores.
The red cells show an example comparing [CARP.4.SDB]
and [PMESI.4.SDB]. This is because CARP introduces
additional hardware such as criticality registers and non-
critical PWB per core, and stores criticality information for
each pending request in the shared memory controller [7].
Note that for two cores, CARP utilizes less LUTs in private
caches, bus and cores compared to PMSI and PMESI, which
might be a result of synthesis tool optimization.

VII. RELATED WORKS

Prior works by Salloum et al. [18] (ACROSS MPSoC) and
Schoeberl et al. [19] (T-CREST) are examples of open-source
multi-core platforms for safety-critical systems. MapleBoard
differs from the above platforms in two main ways. First,
MapleBoard facilitates designers to rapidly prototype and
configure predictable hardware extensions using the Chisel
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TABLE IV: Hardware utilization of MapleBoard implementations.
Modules LUT BR FF LUT BR FF LUT BR FF LUT BR FF LUT BR FF LUT BR FF

[PMSI.2.SDB] [PMSI.2.DDB] [PMSI.4.SDB] [PMSI.4.DDB] [PMSI.8.SDB] [PMSI.8.DDB]
SMC 9009 0 7642 10680 0 7673 15448 0 13076 17988 0 13113 27821 0 23953 33160 0 23977
Cache 27383 180 21815 27601 180 21670 52828 324 43846 52857 324 43370 112487 612 100132 98096 612 94171
Bus 453 0 156 448 0 156 773 0 195 755 0 195 1370 0 276 1848 0 261
Cores 8212 0 6020 8212 0 6020 16566 0 12040 16564 0 12040 32745 0 24080 31248 0 24187

[PMESI.2.SDB] [PMESI.2.DDB] [PMESI.4.SDB] [PMESI.4.DDB] [PMESI.8.SDB] [PMESI.8.DDB]
SMC 9008 0 7650 10706 0 7686 15193 0 13091 18173 0 13120 28289 0 23865 33192 0 24000
Cache 27210 180 21820 27418 180 21675 52604 324 43855 52639 324 43379 96630 612 95718 97925 612 94217
Bus 460 0 161 455 0 161 786 0 204 767 0 204 2221 0 279 1261 0 278
Cores 8210 0 6020 8211 0 6020 16566 0 12040 16564 0 12040 31252 0 24187 31250 0 24187

[CARP.2.SDB] [CARP.2.DDB] [CARP.4.SDB] [CARP.4.DDB] [CARP.8.SDB] [CARP.8.DDB]
SMC 9462 0 7717 10985 0 7758 19511 0 13387 21525 0 13397 50381 0 24877 55897 0 25015
Cache 26283 180 23320 26589 180 23119 55874 324 52527 55674 324 51738 136046 612 140740 134172 612 137678
Bus 390 0 148 373 0 147 772 0 190 1092 0 188 1408 0 275 1857 0 272
Cores 7979 0 6187 7982 0 6187 15915 0 12361 15916 0 12361 31255 0 24187 31253 0 24187

[MSI.2.SDB] [PMSI.2.ATM] [MSI.4.SDB] [PMSI.4.ATM] [MSI.8.SDB] [PMSI.8.ATM]
SMC 8964 0 7605 8881 0 7670 15689 0 13014 15024 0 13093 27648 0 23851 27736 0 23951
Cache 24093 180 20640 23888 180 19057 46063 324 41640 42293 324 34170 99123 612 95695 79572 612 64356
Bus 505 0 214 465 0 210 914 0 283 951 0 258 1550 0 381 1796 0 338
Cores 7984 0 6187 7980 0 6187 15918 0 12361 15917 0 12361 31246 0 24187 31251 0 24187

[MESI.2.SDB] [PMESI.2.ATM] [MESI.4.SDB] [PMESI.4.ATM] [MESI.8.SDB] [PMESI.8.ATM]
SMC 8964 0 7605 8885 0 7656 15705 0 13004 15229 0 13106 27648 0 23851 28216 0 23922
Cache 24093 180 20640 23892 180 19062 46004 324 41597 42465 324 34177 99123 612 95695 78664 612 64367
Bus 505 0 214 468 0 215 862 0 273 797 0 267 1550 0 381 2453 0 355
Cores 7984 0 6187 7978 0 6187 15913 0 12361 15921 0 12361 31246 0 24187 31234 0 24187

HDL [13], and the MapleDSL for specifying predictable cache
coherence protocols. On the other hand, [18], [19] were not
designed keeping in mind configurability, which limits their
use for design space exploration. Rather, they were designed
as complete implementations for chip tape-out. Second, cores
in MapleBoard implement the RISC-V ISA. As a result, Maple-
Board leverages the RISC-V toolchain to execute applications
on the modeled hardware in MapleBoard [25], [34]. On the
other hand, T-CREST and ACROSS MPSoC rely on custom
software tool chains as they implement customized ISAs.

The ESP platform [35] is a recent open-source research
platform for exploring heterogeneous system-on-chip (SoC)
designs for embedded platforms. Similar to MapleBoard, ESP
accepted hardware designs in Chisel HDL, and the multicore
model in ESP was based on the RISC-V ISA [35]. However,
the purview of MapleBoard is different from that of the ESP
platform. In particular, the ESP platform enabled designers
to explore and prototype heterogeneous on-chip accelerators.
ESP provided a tiled architecture that allowed for seamless
integration of accelerators and facilitated communication be-
tween accelerators [35]. On the other hand, MapleBoard en-
ables designers to explore and prototype predictable hardware
extensions including predictable cache coherence protocols to
real-time multicore platforms. Furthermore, hardware com-
ponents in MapleBoard are designed keeping in mind pre-
dictability requirements of real-time applications, whereas ESP
platform is not specifically designed for real-time systems.
Recently, Kandikar et al. [24] designed the FireSim simulation
framework that used cloud FPGAs to primarily accelerate
simulations of data center-scale hardware models. The FireSim
framework is an open-source framework that accepts hardware
designs implemented in Chisel HDL, and allows the input
designs to be integrated with different RISC-V multicore

models [36]. MapleBoard can be simulated using the FireSim
framework.

Recent works such as Pendulum [8] and DISCO [37]
investigate mechanisms to enable predictable data sharing
with cache coherence. Pendulum [8] is a time-based cache
coherence protocol for MCS, in which each cache line per core
has two timers to configure how long a cache line stays valid
before it invalidates itself in response to another critical or
non-critical core. DISCO, on the other hand, prevents modified
shared data to be cached and removes the coherence delays
when accessing modified cache lines at the cost of longer
latency for write accesses to shared data. These techniques
are alternatives to guarantee predictable memory accesses and
are orthogonal to this work.

VIII. CONCLUSION

In this work, we present MapleBoard, a set of open-source
hardware tools to prototype and evaluate cache coherence
protocols in hardware. The tools in MapleBoard consist of
a domain specific language (MapleDSL) for describing cache
coherence protocols, and a real-time multicore platform with
a memory hierarchy, predictable bus interconnects, and a
software runtime component to execute single-threaded and
multi-threaded workloads. We use MapleBoard to propose a
new mechanism for communication, DDB, which tightens the
WCL compared to SDB. We validate the effectiveness of DDB
analytically and empirically with MapleBoard. We success-
fully synthesized MapleBoard implementations with different
core counts, predictable cache coherence protocols, and bus
interconnect configurations on the Xilinx Virtex Ultrascale+
VCU1525 board.
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