
Exclusive Hierarchies for Predictable Sharing
in Last-level Cache

Xinzhe Wang, Zhuanhao Wu, Rodolfo Pellizzoni and Hiren Patel
{xinzhe.wang, zhuanhao.wu, rpellizz, hiren.patel}@uwaterloo.ca

University of Waterloo
Waterloo, Ontario, Canada

Abstract—This work presents an approach to use a last-level
cache (LLC) in a memory hierarchy for cache-coherent real-time
multicores that delivers a low worst-case latency (WCL) and
higher performance than all of its counterparts. Our approach
relies on the key observation that an exclusive memory hierarchy,
by definition, eliminates back invalidations, which are one of
the largest contributors to the WCL when using inclusive
memory hierarchies. However, to the best of our knowledge, there
are no prior efforts that ensure the predictability of exclusive
hierarchies for cache-coherent multicores. Consequently, in this
work, we propose PECC, a predictable exclusive cache coherence
mechanism, that achieves a lower average data access latency
while providing a low WCL bound that scales linearly in the
number of cores. Our evaluation shows that PECC reduces the
bound by 6% and improves the average performance by 2.33×
over the predictable solution with an inclusive LLC.

Index Terms—cache coherence, exclusive cache hierarchies,
predictable architecture, shared last-level cache

I. INTRODUCTION

Modern safety-critical systems are seeking to use multi-
cores to deploy time-sensitive applications commonly seen in
automotive [1] and avionics [2], [3]. These multicores offer
the promise of high performance and an approach to con-
solidate multiple functions into a single platform. For safety-
critical systems, they are typically designed to strike a balance
between predictability and high performance. Predictability
allows analysis methods to compute worst-case latency (WCL)
bounds to ensure that certain tasks always execute within
their temporal requirements. However, developing predictable
multicores that deliver high performance continues to be an
active topic of research as the requirements for predictability
and performance often pull against each other [3]–[5].

Recent research efforts in the design of multicores for
safety-critical systems have focused on improving the per-
formance of the memory hierarchy by proposing predictable
cache coherence schemes that allow multiple cores to cache
data while providing a WCL bound on memory accesses [6]–
[10]. While demonstrating promising results in improving
average-case performance, most of these works1 assume a
shared inclusive last-level cache (LLC), where the interference
poses significant challenges in ensuring a low WCL. For
example, a recent analysis [11] shows that freely sharing an
inclusive LLC can significantly degrade the WCL of memory

1Some of the works assume that the system has a perfect LLC where
accesses are all hits and does not consider the interference on a LLC miss.

requests, which can potentially make tasks unschedulable.
Most existing solutions that employ a LLC [5], [12] eliminate
this interference by partitioning the LLC among the differ-
ent cores. This effectively isolates a portion of the LLC to
each core exclusively. However, LLC partitioning can incur a
significant performance penalty because it under-utilizes the
available LLC capacity from a core’s perspective and makes
coherent caching of shared data challenging [11]. To address
this, zero-cost LLC (ZCLLC) [13] presents a solution that
includes a shared LLC with a novel inclusive LLC architecture.
Although ZCLLC lowered the WCL of a memory request, we
find that there are further opportunities to improve on both the
WCL and performance.

Motivated by this, we present an alternative approach to in-
troduce a shared LLC to multicores for safety-critical systems.
Our key insight is in employing an exclusive cache hierarchy
rather than an inclusive one. Note that almost all prior works
related to predictable cache coherence use an inclusive cache
hierarchy making our contributions distinct from those. This
brings us to the following main contributions of our work.
(1) We present our solution, Predictable Exclusive Cache
Coherence (PECC), which offers both high performance and a
low WCL. (2) We prove that the WCL bound in PECC scales
linearly with the number of cores. (3) We evaluate PECC in the
Gem5 micro-architecture simulator and show that it reduces
the WCL bound by 6% and provides substantially better
average-case performance (2.33×) when compared to ZCLLC.

II. BACKGROUND

A. Hardware Cache Coherence

Modern multicores use hardware cache coherence [14] to
deliver high performance by allowing caching of data while
maintaining a consistent view of that data across all cores.
Cache coherence operates at the granularity of a cache line,
which is a fixed number of contiguous bytes of data. To
maintain a consistent view of the same cache line, each cache
controller implements a finite state machine encoding the rules
of the prescribed cache coherence protocol. The state machine
uses states to encode access permissions and other metadata
(e.g. dirtiness) of the data, and the transitions to represent
changes in states based on memory activities of other cores.

Figure 1 shows the modified-shared-invalid (MSI) cache
coherence protocol [14]. Each transition is labelled with a list
of events (separated with “;”) that trigger this transition, and

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

Fig. 1: MSI state transitions.

the event format is “event / action”. This protocol contains
three states. (1) Modified (M): denotes a state that has read and
write permissions on the cache line, and that the cache line has
been modified; thus, dirty. Only one core can privately cache
a line in the M state. (2) Shared (S): identifies a state with the
read-only permission, and that the cache line data is clean.
Multiple cores can privately cache a cache line in the S state
to allow sharing of clean data. (3) Invalid (I): corresponds to a
state where the cache line is invalid and has neither read nor
write permissions. These three states serve as the base states
for a multitude of other coherence protocols. For example, a
popular protocol is MOESI [15] that introduces two additional
states. (1) Exclusive (E): identifies a cache line as a read-only
and exclusive copy, which means that it is not shared by any
other core. (2) Owned (O): represents a read-only cache line
that may be dirty, but not exclusive. This allows the owner of
the cache line to reply to coherence requests by other cores
for that cache line [14].

Example. A core issues a request to its private cache in the
form of a load or a store. If the requested cache line is not
present in the core’s private cache with the correct permission
(i.e. cache miss), the cache controller generates coherence
requests such as a GetS for a load and a GetM for a store,
respectively. The GetS denotes a request to get the cache line
with the read-only permission (cache line ends up being in
the S), and the GetM with the read-write permission (cache
line ends up in M). Suppose that a cache line is in the M
state, and another core’s cache controller generates a GetM
coherence request for the same cache line. Only one core is
allowed to have the shared cache line in M; thus, the core with
the cache line responds to the other core’s request, and then
invalidates its own copy. Note that the other requesting core
would transition the cache line to the M state. Now suppose
that the cache line in the M state must be replaced in the other
core’s cache, then its respective controller will generate a Put
coherence request to writeback the dirty data.

In essence, the coherence protocol orchestrates the nec-
essary communication between caches to achieve coherent
sharing of data by maintaining single-writer-multiple-reader
(SWMR) invariant and data-value invariant [14]. SWMR in-
variant ensures that only one copy of the data exists in the
caches when the data is being written to or multiple copies
of the data can be cached exclusively for reading. The data-
value invariant requires the coherence protocol to ensure that

the requestor of data always receives the most up-to-date data.

B. Inclusive and Exclusive Policies of Cache Hierarchies

An important design decision for multi-level caches involves
determining whether the cache hierarchy is inclusive, exclusive
or non-inclusive. We explain the differences between the three
using an example where a core has two caches: a level-one
(L1) cache being closest to the core, and a level-two (L2)
cache being further away. An inclusive cache hierarchy (ICH)
requires any cache line present in the L1 cache to also be
present in the L2 cache. A non-inclusive cache hierarchy
is one that is not inclusive. An exclusive cache hierarchy
(ECH) requires a cache line to be present exclusively either
in the L1 cache or the L2 cache, but never in both. An
ECH is essentially a non-inclusive hierarchy with an additional
constraint that data should not be duplicated across levels in
the hierarchy. An ICH has less effective LLC capacity when
compared to non-inclusive alternatives. This is because an
ICH duplicates data. This affects the performance as the core
count on multicores increases and each with larger private
caches [16]. Consequently, modern commercial-off-the-shelf
(COTS) multicores, such as Intel’s Raptor Lake, AMD Zen,
and ARM Cortex R82 [17]–[19], are moving towards using
non-inclusive hierarchies [16].

III. RELATED WORK AND MOTIVATION

Prior works show that predictable versions of cache co-
herence [6]–[10] provide a WCL on memory requests while
improving average-case performance. Similar to these prior
efforts, our work uses a bus snooping protocol where the
coherence request is broadcasted on the bus and monitored
by all cores’ private cache controllers. We find that bus
snooping protocols are appropriate for systems with core
counts ranging up to 8 cores [14], which is a common setup
in current real-time multicores [19]. Our detailed study of
prior efforts [6]–[11], [13] revealed a common assumption
amongst all these works: the cache hierarchy is inclusive. This
assumption makes it difficult to include a shared LLC as it
introduces interference between levels of the hierarchy that
makes guaranteeing temporal requirements challenging [11].
We make three critical observations about such challenges.

Observation 1: Large per-request WCL. It has been re-
ported that the interference caused by using a shared inclusive
LLC can significantly lengthen the WCL of a single memory
request when compared to a system without a LLC [11], [13].
We illustrate the crux behind the reasons using the illustration
in Figure 2. Consider a read request to cache line A issued
by the core under analysis Cua. Suppose this request misses
in Cua’s private cache and broadcasts a GetS(A) request on
the bus. The GetS(A) arrives at the LLC, and the LLC’s con-
troller processes it. However, during processing, the controller
discovers that the request for A is a miss, and the cache set
that A maps to is full. This requires one of the cache lines to
be evicted. Suppose that the chosen cache line is B, and it is
in the M state. This means that a core has privately cached
the line B, and modified it. To maintain an ICH, the privately

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

Fig. 2: Request processing timeline of read(A) request of the core under analysis Cua in a multicore system with N cores.

cached copy of B must be written back and invalidated in the
private cache prior to ensuring that the line B is no longer
present in the LLC. This type of invalidation of private L1
copies due to the eviction of the same cache line from the LLC
is referred to as back invalidations. After the back invalidation
is initiated, the LLC waits for the dirty line B to be sent to the
LLC (window 1 marked in Figure 2). Then, the LLC issues a
write of B to the main memory, and waits for it to complete
(window 2 marked in Figure 2). Finally, the LLC can issue
a main memory read to fetch A following the completion
of the main memory write of B. During these two waiting
windows, other cores can proceed and insert main memory
requests ahead of Cua. As a result, at worst, when the main
memory request of Cua is issued, all requests from other cores
are queued before it, taking O(N) main memory operations
to complete where N is the number of cores. Looking earlier
into the request timeline when GetS(A) arrives at the LLC,
GetS(A) may encounter resource contention with O(N) other
requests that need to complete one after another. For example,
all requests may need to occupy the same cache entry as
determined by the replacement policy. Since each request can
experience the same scenario and takes O(N) main memory
operations to complete, overall, GetS(A) requires O(N2) main
memory operations to complete.

Observation 2: Imprecision of static cache analysis. The
interference caused by back invalidations in a shared inclusive
LLC can pose additional challenges for the precision of static
cache timing analysis2 on private data in L1 [20], [21],
resulting in a pessimistic WCL bound for the task. When
calculating the WCL at the task level, using the WCL of
accessing the main memory for all memory requests is grossly
pessimistic because the number of cache hits is typically
higher than misses. Typically, a safe tighter bound for the
task can be obtained by only multiplying the hit latency
for the memory accesses that are guaranteed to hit inside
caches as determined by static cache analysis. However, in a
multicore system with a shared inclusive LLC, such analysis
is difficult due to the interference of back invalidations [20],
[21]. Specifically, private data cached in a core’s L1 can be
back invalidated by another core’s actions to the shared LLC
that triggers a LLC replacement. Due to the complexity of this

2Although no existing static cache analysis work is applicable to shared data
under coherence effects, the WCL of a task can be tightened by applying the
analysis to the private data portion [9], [20].

type of multicore interference, for many memory accesses, the
analysis tool is uncertain if the requested data is present inside
the cache and has to assume the worst case where a cache miss
is incurred to obtain a safe upper bound (i.e. degradation of
analysis precision). Most prior works on static cache analysis
circumvent this interference by requiring the shared LLC to
be partitioned to different cores [20]. This requirement makes
coherent caching of shared data challenging, which we wish
to enable for high performance implementations.

Observation 3: Limitations of the state-of-the-art. To
address the challenges in the shared inclusive LLC, [13]
proposes zero-cost LLC (ZCLLC), a novel inclusive LLC
architecture that does not incur additional penalty to the WCL
of memory requests. ZCLLC achieves this by performing
smart relocation of cache entries and maintaining a vacancy
invariant that a clean victim line is always available for a LLC
replacement. Guaranteed by the vacancy invariant, neither
back invalidations nor main memory writes are triggered upon
a LLC replacement. However, we observe that ZCLLC has the
following two key limitations. (1) ZCLLC models all shared
hardware (e.g. buses, the LLC, and the main memory) as one
single entity for arbitration under time-division-multiplexing
(TDM) scheme. This requires the length of the TDM slot to
cover the WCL to transfer data to and from the main memory.
We observe that this approach limits the benefits of the LLC.
This is because, even when a request experiences a hit in the
LLC, the entire TDM slot must expire before completing the
transaction. (2) ZCLLC requires a custom architecture for the
LLC. In particular, it modifies the LLC architecture to support
cache line relocation, which incurs additional storage and logic
overhead. For example, to perform reallocation of a cache line,
the cache line needs to first be read from the original cache
set and then written to the destination cache set. Meanwhile,
the storage holding the reallocation information needs to be
updated. To read a reallocated cache line, two sequential data
array look-ups are also required. These additional accesses
due to relocation can lengthen the LLC processing time. In
our work, we do not modify the LLC architecture as it is
a performance sensitive component of conventional memory
hierarchies.

Proposal: Exclusive Cache Hierarchy (ECH). We find that
we can address the challenge of including a LLC using an
alternate approach. Note that all prior efforts on predictable
cache coherence protocols [6]–[11], [13] use an ICH. However,

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

Fig. 3: Worst-case traffic flow in ICH and ECH with operations
related to main memory writes highlighted.

we observe that an ECH for the LLC, by definition, removes
the central issues such as back invalidations that make using
LLCs with ICHs difficult. To illustrate this insight, Figure 3
compares the worst-case traffic flow between an ICH and an
ECH. In an ICH, before filling new data into both the L1
cache and the LLC, the LLC must ensure a vacant entry is
available, which potentially triggers a back invalidation and
a main memory write when completing a Get request (Get
flow). As explained earlier in observation 1, these are the crux
that significantly lengthens the WCL in an ICH. However, in
an ECH, new data from the main memory bypasses the LLC
and directly fills the L1 cache. This immediately removes the
back invalidation and main memory write in Get flow. Note
that the main memory write is instead rescheduled to a core’s
writeback request from the L1 cache to the LLC (writeback
flow). Specifically, this happens when the LLC replaces a dirty
line to make space for the data written back from the L1
cache. The rest of the paper discusses our solution in detail,
which mainly comprises of two ingredients: (1) We develop a
predictable cache coherence protocol that maintains an ECH.
We contend that by maintaining an ECH, the LLC functions
similar to caches in COTS platforms (resolving limitation 2
of ZCLLC). (2) We employ a split-transaction bus with fine-
grained arbitration to promote parallelism available in the
cache hardware (resolving limitation 1 of ZCLLC).

IV. SYSTEM MODEL

We present our system model and introduce the symbols we
use in the remainder of the paper.

A. Processing Cores and Cache Hierarchy

Cores. We consider a multicore system with N cache-
coherent cores connected to a memory hierarchy with two
levels of caches and a main memory as shown in Figure 4.
Each core implements an in-order pipeline that issues at most
one outstanding memory request at a time. This requirement
of one outstanding memory request is consistent with prior
related works [6]–[8], [11], [13]. It limits the overall number
of outstanding memory requests in the system to N , serving
as the basis for conducting timing analysis in various system
components (e.g. buses, caches, and the main memory).

Cache hierarchy. The cache hierarchy consists of two levels:
a split instruction and data cache that is private to each core

Fig. 4: Overview of system model.

at level one (L1), and a shared last-level cache (LLC) for all
cores at level two. The two-level caches maintain an exclusive
hierarchy. All L1 and LLC caches are writeback caches, and
they use write-allocate for write requests. The shared LLC
employs an implementation that has M independent banks
with each bank having a request queue at its input. We assume
such an LLC implementation because banks are known to
improve performance in COTS platforms [22]. A request that
arrives at the shared LLC is inserted into one of these queues.
We assume that the size of the queue allows each core to make
one request. A bank processes requests from its queue in first-
come-first-serve (FCFS) order. Note that the shared LLC’s
cache sets are assigned to different banks in an interleaved
manner (e.g. seti is assigned to banki%M+1). This allows the
LLC to process requests in parallel if the requests access cache
sets that are mapped to different banks. We assume that the
WCL to access a bank in the LLC is tBANK , which includes
checking the tag array and reading from or writing to the data
array. A bank can issue a main memory request. In particular,
it issues a main memory read when the data is not found in
the bank, or a main memory write when a dirty cache line is
replaced. Additionally, the bank contains miss status handling
registers for temporarily holding the dirty data to be written
to the main memory. For additional details on the LLC and
bank operations, we refer the readers to the exclusive LLC
controller design discussed in Section V-A.

B. Coherent Interconnect

Our system model uses separate request and response buses
for the coherent interconnect between L1 caches and the
LLC. The request and response buses together comprise a
split-transaction bus, which improves system performance
by interleaving processing of transactions from multiple re-
quests [14]. The split-transaction bus design is commonly
deployed in COTS platforms such as Arm Corelink [23] and
Intel’s QPI [24]. The two buses are explained next.

Request bus. The request bus is responsible for broadcasting
coherence requests from the cores’ L1 cache controllers.
Note that this also includes the data payload contained inside
the writeback request. Additionally, similar to common bus
snooping protocols [14], [15], the request bus contains a shared
wired-OR line to report the snoop result of the requested cache
line. In our case, the shared wired-OR line is asserted high if
any L1 cache has a copy of the requested cache line. We use

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

tREQ to denote the WCL to complete a request broadcast on
the request bus.

Response bus. The response bus transfers the response to
coherence requests, which includes data response for Get type
requests and acknowledgement (Ack) for writeback requests.
The response bus also supports direct cache-to-cache transfer
for data transfer between L1 caches. We denote the WCL for
sending a response as tRESP .

Bus arbitration. We deploy two bus arbiters to predictably
manage accesses to the split-transaction bus while delivering
high performance. We use a work-conserving time-division
multiplexing (TDM) arbiter at the request bus and an oldest-
age arbiter (OA) at the response bus. We present the details
of the design and rationale for the arbiters in Section V-B.

C. Main Memory

The multicore system also has a main memory. We assume
that all instructions and data required by the application are
available in the main memory. The system bus connects the
LLC and the main memory for transmitting requests from the
LLC to the main memory, and responses from the main mem-
ory to the LLC. Note that the LLC contains M independent
banks that can issue main memory request individually, and
the maximum number of outstanding main memory requests in
the system is N . The system bus and the main memory must
employ buffering mechanisms to support this requirement.
This is required to ensure that a bank can immediately issue
a main memory request without being blocked by the back
pressure from the system bus and main memory. Starting from
the time when a bank issues a main memory request, we
denote the WCL for completing this request as tMEM . This
accounts for the interference from M bank requestors, with a
limit of at most N outstanding main memory requests across
the system. For the evaluation (Section VII), we use a single-
port SRAM model. The details of this model are provided next.
The system bus has a global queue for M banks to insert their
main memory requests. The global queue orders the requests
based on FCFS order. For the main memory requests issued
in the same clock cycle, they can be inserted into the global
queue in any order. In addition, the insertion happens fast so
that even if all requests from M banks arrive at the same
time, all of them finish insertions before the next request is
issued. The system bus and the SRAM process the requests in
the order of this global queue. Also, the system bus supports
simultaneous transmission of request from the LLC to the
main memory, and the response from the main memory to the
LLC. We denote the latency to service a single main memory
request as tSRAM , including the processing time on the global
queue, system bus and the SRAM. Therefore, tMEM is upper-
bounded by N · tSRAM in this model.

V. PREDICTABLE EXCLUSIVE CACHE COHERENCE

We propose a Predictable Exclusive Cache Coherence
(PECC) mechanism that offers both high performance and a
low per-request WCL bound. This section is divided into two

TABLE I: Cache line properties.

Property Definition

Dirtiness A cache line is dirty if it is modified and holds the most up-to-
date value compared to main memory.

Uniqueness A cache line is unique if it is unshared (i.e. the only privately
cached copy is itself).

Ownership A cache line is owned if the entity (i.e. cache or memory) is
responsible for replying to coherence requests for that cache line.

parts: (1) We present our protocol description for the exclusive
cache coherence. (2) We discuss our bus arbitration policy that
predictably manages coherence traffic while delivering high
performance. The combination of the coherence protocol and
the bus arbitration results in PECC.

A. PECC Protocol

Although implementations for ECHs exist [25], public de-
scriptions, documents, and open-source implementations for
ECHs with a shared LLC are, to the best of our knowledge,
not available. Consequently, we begin by exploring the design
of a MOESI protocol for an ECH by articulating the challenges
one would encounter when subsuming approaches taken in the
design of an ICH-based MOESI protocol. Then, based on the
observed challenges, we define invariants one must honour
when designing coherence protocols for ECHs and propose
the protocol for PECC. We provide three definitions in Table I
that are essential in our discussion of the protocol design.

Challenge 1: Invalidation on writeback. In ECHs, since the
contents of L1 and the LLC must be exclusive to each other,
a writeback of a line from a L1 cache to the LLC would force
all other copies of the cache line in other cores’ L1 caches
to also be invalidated. Consider an example where cores C1

and C2 cache the same dirty line in the O state and the S
state, respectively. Now, suppose that C1 evicts that cache line.
According to MOESI, C1 needs to writeback the dirty cache
line to the LLC. In an ICH, C2 can retain its shared copy after
the writeback by C1. However, in an ECH, C2 must invalidate
its shared copy since there can only be one copy of that cache
line in either L1 or the LLC. Furthermore, in an ECH, this
situation arises even when the cache line is clean since clean
cache lines must also be written back to the LLC [16] on
an eviction to populate the LLC content. Similar to the back
invalidation problem in an ICH, this type of invalidations due
to another core’s action on the shared LLC complicates the
analysis and degrades its precision. Specifically, this creates
issues for the analysis of read-only data and instructions in
ECHs. We propose the following invariant to remove the
invalidation on writeback problem.

Invariant 1. For an ECH, a cache line can be written back
to the LLC from L1 if and only if it is unique.

Challenge 2: Inefficient ownership assignment. An im-
portant design aspect of cache coherence protocols is the
ownership assignment to identify the entity (i.e. cache or main
memory) responsible for sending the requested data. In an

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

Fig. 5: Stable state transitions in PECC protocol with differ-
ences compared to MOESI protocol highlighted in red.

ICH, in the case when no L1 controller holds the ownership
of privately cached data, the LLC is the owner because it also
holds the consistent copy of the data. For example, suppose
that C1 has a cache line in S. Then, when another core, C2,
makes a request to that same line cached in C1’s L1, it is the
LLC that responds to the GetS or GetM request if there is
no owner in L1. We observe that the same situation becomes
problematic for ECH. Due to the exclusive property, it is not
possible for the LLC to hold a valid copy of privately cached
data. As a result, the main memory, which also has a consistent
copy of the cache line, is deemed the owner. In summary, in an
ECH, accesses to private cached data in L1 would necessitate
communication with the main memory, thereby degrading the
performance [25]. To address this issue, we propose the second
invariant to ensure that any coherence request to privately
cached data in L1 can be directly supplied by L1 caches.

Invariant 2. In an ECH, the ownership of any privately
cached data must be retained in L1.

Based on these invariants, we propose PECC protocol for
the ECH described in the system model by extending the
conventional MOESI protocol. The key reason why MOESI
fails to satisfy these invariants is that writeback is issued upon
replacing a cache line in the O state where sharers exist. If
the data is written back to the LLC, cache line copies in the S
state are invalidated, violating Invariant 1. Also, if one chooses
to write back the data directly to the main memory without
invalidating sharers in L1, the ownership is downgraded to
the main memory, breaking Invariant 2. To maintain both
invariants, PECC employs sharer tracking that records the
cache line sharers and performs ownership transfer to one of
the sharers upon evicting cache line in the O state.

Sharer tracking. To track the cores sharing a cache line,
PECC maintains a bit vector of size N − 1 to store the
sharers in L1. The owner of each cache line updates the sharer

TABLE II: Stable states in PECC

State Permission Dirtiness Uniqueness Ownership

M Read-write Dirty Unique Owned
O Read-only Clean/Dirty Shared Owned
E Read-only Clean Unique Owned
S Read-only Clean/Dirty Shared Unowned
I No permission N/A N/A Unowned

information by observing GetS and PutS messages on the bus.
Note that this requires that the replacement of a cache line in
the S state generates an explicit PutS, whereas a cache line
in the S state in MOESI protocol can be silently evicted.

Ownership transfer. When a cache line in the O state gets
evicted, PECC uses a PutO message to transfer the ownership
to one of the other remaining sharers. Note that when a cache
line is in the O state, we are guaranteed to have at least one
other core that has a privately cached copy of the same cache
line in the S state. Since we extend the cache line with sharer
tracking information, each privately cached line knows other
sharers of the same cache line. Thus, the cache controller
evicting the cache line in the O state can select one of the
existing sharers as the next new owner of the cache line. After
selecting the new owner, the L1 cache controller generates
a PutO message on the bus with the new owner identifier
and the recent sharer information. All cores’ cache controllers
receive this PutO message, and the cache controller associated
with the new owner claims itself as the owner of the cache
line by copying the sharer information and moving the cache
line to the O state. Note that this ownership transfer does not
writeback data to the LLC.

In summary, PECC protocol satisfies the invariants by ensur-
ing the ownership and data remain in L1 unless a replacement
of a unique cache line happens (i.e. M or E state). Note that the
M and E state already hold the ownership for a unique cache
line that is dirty and clean respectively [14]. The definitions of
stable states and coherence requests in PECC are summarized
in Table II and Table III, respectively. Figure 5 shows the stable
state transitions in PECC. Each transition is labelled with a
list of events (separated with “;”) that trigger this transition.
The event format is “event [condition] / action”. The condition
specifies the cache line properties after the transition. Take
the transitions for a load miss in state I as an example, where
the possible next states are S, E, and M. In this case, the
state properties are inferred by the metadata associated with
the data response. For instance, if the data response is sent
through cache-to-cache transfer by another core, it means that
the data is shared, so the target state is S. On the other hand,
if the data response comes from the lower levels (i.e. the LLC
or the main memory), it means that the data is unique, and the
target state is further determined by the dirtiness of the data
(i.e. M if dirty otherwise E).

Transient states. For PECC to deliver high performance,
we use transient states in the protocol. A transient state is an
intermediary state between two stable states. Starting from one

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

TABLE III: Coherence requests in PECC

Request Description

GetS Obtain a cache line with read-only permission.
GetM Obtain a cache line with read-write permission.
Upg Upgrade a cache line from read-only to read-write permission.
PutS Evict a cache line in the S state. The request is used to notify other

cores that the requestor is no longer a sharer of the cache line.
PutO Evict a cache line in the O state. The request specifies one of the

sharers as the new owner. In our case, we select the sharer with the
smallest ID as the new owner. Also, the sharer information for the
cache line is passed along with the request.

PutD Evict and writeback a cache line in the E or the M state to the LLC.
The writeback data is transmitted along with the request.

of the stable states, it is possible that a cache line’s state may
transition through multiple transient states before reaching the
final stable state. This is essential in allowing for interleaved
memory requests [14]. PECC uses a TDM arbiter with a slot
width that only covers the time required to broadcast the
request without waiting for the entire transaction to complete.
This means that although a core can guarantee that no request
interleaving from other cores can be observed when it issues
a request within its assigned TDM slot, it is possible that the
core observes other cores’ requests while it is waiting for the
response. Table IV shows the complete protocol table with
the transient states to handle such request interleaving. To
illustrate their use, consider an example with two cores C1

and C2. Initially, C1 issues a store that results in a miss in
its private L1 cache. Hence, C1’s cache controller generates
a GetM and enters a transient state IMd once C1 is granted
its slot to broadcast the request. The state name IMd indicates
that between stable states I and M there is a transient state
where d indicates that the L1 cache controller is awaiting
a data response. Suppose that while C1 holds the requested
cache line in the IMd state, C2 encounters a load miss to the
same cache line and issues a GetS request. Instead of blocking
the request until the data response arrives, C1 processes it by
updating the sharer info (action US) and add it as a pending
requestor (action AR), then moves to another transient state
IMdO. After receiving the data response, C1 completes its own
store request (action SH) and then send the modified cache line
to C2 (action SD). Finally, C1 clears the requestor information
(CR) and transitions to state O. Recall that C1 enters the O
because C2 has the same cache line data in the S state. Other
interleaving of requests are handled in a similar way.

Exclusive LLC controller. In PECC, the LLC behaves as
a victim cache for the L1 caches. This means that the LLC
gets populated by writeback data from PutD requests from
the L1 caches. The LLC controller observes the events on the
request bus and inserts them in the corresponding bank’s input
queue. This only occurs when the LLC controller notices that
no other L1 caches have the requested cache line. We identify
this absence of cache line in the L1 caches using the shared
wired-OR line on the request bus. Once the bank is idle, it
picks up the request at the head of the queue and becomes
busy for a duration determined by the request type and cache
state. The operations the bank must do for the different request

types are described next.
• GetS/GetM: If the requested data is found in the bank

(cache hit), then the bank reads the data and deallocates
the cache entry. The data from the bank is sent to the
requesting core. However, if the requested data is not
found in the bank (cache miss), the bank generates a
main memory read request and becomes free to process
the next request in its queue while the main memory
read is being processed. This allows parallel processing
of the memory read and bank access. In the worst case,
accessing the bank takes tBANK to process GetS/GetM
requests, irrespective of the request hit status.

• PutD: If the targeted cache entry CE for a PutD request
is empty or contains a clean cache line, the bank writes
PutD’s data to CE and sends an acknowledgement (Ack)
to the requestor. This also takes the bank tBANK to
process at worst. However, if the data in CE is dirty, the
bank first reads the dirty cache line and places it in a miss
status handling register, taking tBANK . Then, the bank
writes PutD’s data to CE, taking another tBANK . After
the bank completes the write, it issues a main memory
write of the dirty data in the register and completes
the processing without waiting for the main memory
response. In this case, since two sequential accesses to
the bank are required (i.e. a read followed by a write),
the processing time is 2 · tBANK .

If a main memory request (read/write) is issued when process-
ing a request, the response to the requestor (data for read/Ack
for write) is sent when the main memory request completes.
In this case, the LLC controller forwards the response from
the main memory to the requestor without accessing the bank.

Hardware overhead. In PECC protocol, the primary hard-
ware overhead is the L1 tag storage overhead required to
store the sharer list, which adds an additional N − 1 bits in
tag storage per L1 cache line. Note that PECC protocol has
the same number of stable states as MOESI protocol, thus
incurring no overhead in state encoding. We argue that the
storage overhead for sharer tracking is small for a bus-based
system with a small core count. For example, in the eight-
core system used in our evaluation (Section VII), the overhead
is 18% in the tag storage or only 1.3% in the total storage
(combining the tag and data). While this can potentially
lengthen the access time of the tag array, its impact on the
critical path of a cache hit is minimal, which is dominated by
the data array access.

B. Bus Arbitration

This section describes the details of the TDM-OA arbiter
pair that predictably manage the split-transaction bus while
promoting parallelism in the cache resource.

TDM arbiter at request bus. The request bus arbiter is
a work-conserving time-division-multiplexing (TDM) arbiter.
The TDM arbiter assigns cores to a periodic time slot in
a round-robin order. Work-conserving means that the TDM
arbiter skips a core if it has no work to do (i.e. no coherence

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

Bus EventsCore EventsState

OtherPutDOtherPutOOtherPutSOtherGetMOtherGetSOtherUpgOwnAckOwnDatareplacementstoreload

------XXXissue GetM / IMdissue GetS / ISdI

XUS / E, M, O, S-- / I-- / IXXissue PutS / Iissue Upg, SH / MLHS

XXXSD / IUS, SD / OXXXissue PutD / IASHLHM

XXXSD / IUS, SD / OXXXissue PutD / IASH / MLHE

XXUS / E, M, OSD / IUS, SD- / IXXissue PutO / Iissue Upg, SH / MLHO

XCR, US / IOd, ISdUS / -AR / ISdIAR, US- / ISdIXLH, SD, CR / E, M, SXXXISd

XXUS / -AR / IOdIAR, US- / IOdIXLH, SD, CR / E, M, OXXXIOd

XXXAR / IMdIAR, US / IMdOXXSH / MXXXIMd

--X--XXLH, SD, CR / IXXXISdI

--X--XXLH, SD, CR / IXXXIOdI

XXX--XXSH, SD, CR / IXXXIMdI

XXXAR / IMdIAR, USXXSH, SD, CR / OXXXIMdO

------- / IXXXXIA

Action acronyms

Load hitLH

Store hitSH

Send data if owned and
requestors exist

SD

Update sharer infoUS

Add requestorAR

Clear requestor infoCR

Format: “action / next state”.
• Next state is ignored if

remains the same.
• “-” indicates no action or

transition is required.
• “X” indicates impossible

transitions.

TABLE IV: PECC protocol table. If multiple next states are listed, the correct one is determined by the cache line properties.

request is required) and directly assigns its slot to the next core
which needs the request bus following the round-robin order.
Notice that we only require the slot width to be large enough
to transmit a request over the request bus (latency of tREQ)
rather than the worst-case latency of a memory transaction as
assumed in prior works [6], [7], [11], [13]. Another difference
is that the TDM bus implements a counter that increments
whenever a core is granted access to the request bus. Every
request is associated with the counter value as its request
idientifier (ID) when being broadcasted on the request bus.
The request ID is used to compare the request broadcast
time (i.e. the request age) in the response bus arbiter. We
say that a request is older if it has a smaller request ID
compared to another request. To account for counter overflow,
the counter size is required to be at least twice as large as
the maximum difference between the IDs of two pending
broadcasted requests in the system, which is upper bounded
by the WCL of requests divided by tREQ. We show how to
derive a request WCL bound in Section VI.

OA arbiter at response bus. One approach to ensure low
WCL bounds for a split-transaction bus is to use a pipelined
bus (PIPE) [8] where responses are serviced in the same order
of requests being broadcasted on the request bus. However,
PIPE delays sending the response of a younger request until
the older requests receive their responses. This problem gets
aggravated in multicore systems supporting cache-to-cache
transfer and a shared LLC because a low-latency cache-to-
cache response or a LLC hit response may be blocked by
a main memory response taking up a longer latency. This
degrades the system throughput. One way to resolve this
throughput issue is to use a FCFS arbiter at the response bus.
However, we note that using FCFS can lead to a larger WCL.
To resolve the WCL issue without significantly impacting
system throughput, we propose to employ an oldest-age (OA)
arbiter: among all ready responses (i.e. responses that can
be issued on the bus), the OA arbiter prioritizes sending the
response of the oldest request.

Figure 6 gives an example of the operation of the OA arbiter
and compares it against PIPE and FCFS. In the example, ri,j

stands for the jth request issued by core Ci. r3,1 and r4,1 are
GetM requests to the same cache line, and r4,1 depends on
r3,1. It means that r3,1 must complete first, and the response
to r4,1 only becomes ready and is forwarded by C3 after
C3 updates the cache line. In this case, r3,1 requires a main
memory read. Notice that in the PIPE approach, the long-
latency response of r3,1 effectively blocks the low-latency
responses of r1,1 and r2,1 (e.g. LLC hit). In both FCFS and
OA, r1,1 and r1,2 can complete without waiting for r3,1, and
C1 and C2 can insert new requests once the previous ones
complete. Within the same interval of time, 7 requests are
completed in FCFS and OA compared to only 4 requests in
PIPE. However, in FCFS, the response to r4,1 is delayed by
almost 3 · tRESP , compared to PIPE. Recall that r4,1 depends
on r3,1 and requires r3,1 to complete first before its response
is ready. While waiting for r3,1 to complete, the system can
generate new requests (e.g. r1,2, r2,2, and r1,3) and have their
responses ready to interfere with r4,1. Note that this pattern can
be extended if a longer chain of dependency is established in a
system with more cores, incurring an even larger latency than
the example scenario. Since OA always prioritizes sending the
response to the oldest request, the response is at most delayed
by only one tRESP compared to PIPE. The one tRESP delay
is caused by the fact that the response bus is busy under
service when the response to the oldest request becomes ready.
For example, when the response of r3,1 becomes ready, the
response bus is currently busy servicing r1,2.

VI. ANALYTICAL WORST-CASE BOUND DERIVATION

In this section, we derive the WCL3 of coherence requests
for loads and stores issued by a core. We first define the request
processing model, acting as a basis for the derivation of WCL
bounds. Then, we prove the WCL bound of PECC for loads
and stores to be asymptotically linear in the number of cores.

A. Request Processing Model

When a coherence request enters the system (i.e. generated
by the L1 controller for a core’s load or store that misses in

3In this paper, “WCL is ...” refers to an upper bound of the actual WCL.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

Fig. 6: Comparison of response bus arbiters. Events of processing requests from the same core use the same color. ↑ marks
the ready time of the response. The FCFS timeline is drawn assuming the worst-case arbitration decision for r4,1’s response.

L1), it needs to be serviced by one or more shared hardware
resource(s) in a specific order. The resources we consider
include the request bus (REQ), the response bus (RESP), the
LLC banks (BANK), and the main memory (MEM). Based
on the required hardware resources and the access order,
we classify the coherence requests into the following four
types: (T1) →REQ. The first category represents the request
type that only requires a request bus broadcast to mark its
completion without the need for any explicit response mes-
sage. The requests belonging to this type are Upg, PutS and
PutO. (T2) →REQ→RESP. Requests in this category must be
serviced by the request bus and the response bus in sequence.
This category includes GetS/GetM requests that hit in another
core’s L1 cache and trigger cache-to-cache transfers without
accessing the LLC bank. (T3) →REQ→BANK→RESP. This
category includes any request that needs to be processed by
the request bus, the LLC bank, and finally the response bus
in order. Requests falling in this category can be either a
GetS/GetM request hitting in the LLC or a PutD request
that does not trigger extra eviction from the LLC bank to
the main memory. (T4) →REQ→BANK→MEM→RESP. The
final category represents any request that requires access to the
main memory. Such a request is either a GetS/GetM missing
in all L1 caches and the LLC or a PutD request that triggers
writeback from the LLC bank to the main memory.

Any request arrives at REQ immediately upon entering the
system. When a request arrives at a resource, it experiences a
latency consisting of the time waiting to be arbitrated and
then serviced by that resource. After a request finishes its
processing in the current resource, it immediately moves to
the next resource except for the case where it depends on
another request. Recall the example of transient states in
Section V-A: at the time C2 broadcasts its GetS request,
the GetM request issued by C1 is still pending, but C1

already holds the ownership of the cache line. As a result,
after the GetS of C2 finishes at REQ, it cannot move to
the next resource (i.e. RESP) immediately. Instead, it must
wait until C1 completes its GetM request; thus, finishing the
store operation at which point C1 can respond to the GetS
request of C2. Note that this kind of request blocking due
to request dependencies is only possible between GetS/GetM
requests, but not other requests: T1 requests (Upg/PutS/PutO)
only transmit control information and immediately finish after
REQ; while for PutD requests, the writeback data from L1 to
the LLC is transmitted together with the request itself on REQ,

meaning that data is available in the LLC without waiting
for the request completion. We now formally define request
dependency to capture the notion of request blocking.

Definition 1 (Request Dependency). Given two GetS/GetM
requests, ra and rb issued by different L1 controllers, we say
that rb directly depends on ra if the following conditions are
satisfied. (1) Both ra and rb are requests to the same cache
line. (2) ra finishes at REQ before rb. (3) At the time when
rb finishes at REQ, the requestor of ra holds the ownership of
the cache line, but ra has not completed yet (i.e. ra has not
finished at RESP).

When one or more requests directly depend on a request
ra, all the dependent requests wait for ra’s completion and
then move to RESP. At the same time, the requestor of ra
associates the response with the earliest request ID among
dependent requests. When the OA arbiter selects the response
based on such ID, the response bus broadcasts the data to
all dependent requests supported by cache-to-cache transfer
and taking tRESP time. This also implies that the dependent
requests must belong to T2.

Additionally, multiple requests can form a dependency
chain, where the earliest request in the chain blocks the
processing of all other requests. We extend the concept of
dependency to eventual dependency to capture the earliest
request that causes such blocking.

Definition 2 (Eventual Dependency). Given two GetS/GetM
requests, ra and rb, we say that rb eventually depends on ra if
the following conditions are satisfied. (1) rb directly depends
on ra, or there are k (k ≥ 1) intermediate requests such that
r1 directly depends on ra, ri directly depends on ri−1 for
(2 ≤ i ≤ k) and rb directly depends on rk. (2) At the time
when rb finishes at REQ, ra has not completed yet. (3) ra is
the oldest request that satisfies (1) and (2).

Example of request dependency. Figure 7 shows the request
dependencies for an example timeline in the form of a directed
acyclic graph. In this case, each of the five L1 controllers
issue a coherence request. For example, L1 controller A issues
a coherence request ra of GetM. All requests are made to
the same cache line. The timeline also indicates the owner
of the target cache line at each specific time. A black arrow
represents a direct dependency, while a red arrow shows an
eventual dependency. Note that rb and rc share the same
response as they directly depend on the same request ra. rc

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

directly depends on ra, but not rb because the requestor of
rb does not hold the ownership of the cache line when rc
is broadcasted on the request bus. Additionally, re eventually
depends on rc, but not ra. This is because ra has finished
by the time re finishes at REQ, and rc is the oldest pending
request that blocks re from entering RESP.

Fig. 7: Example of request dependencies.

B. Analysis

After providing necessary definitions and formalizing our
processing model, we can now proceed by deriving the WCL
bound for a coherence request under analysis, denoted as rua.

Lemma 1. The WCL in REQ is (N + 1) · tREQ.

Proof. The work-conserving TDM arbiter at the request bus
assigns a TDM slot to each core in a round-robin manner. In
the worst case, the request under analysis, rua just misses its
assigned slot, and all other cores issue requests to occupy the
remaining slots in the TDM period. As a result, rua waits no
longer than one full TDM period to win arbitration and then
tREQ to be serviced by the request bus, yielding a latency
bound of (N + 1) · tREQ.

Lemma 2. The WCL in BANK is (2N − 1) · tBANK if rua is
GetS/GetM or 2 ·N · tBANK if rua is PutD.

Proof. Note that only requests in T3 or T4 are processed by the
LLC bank, which is one of GetS, GetM or PutD. The WCL
for the bank to process a single request is 2 · tBANK . This
happens when the request is a PutD of type T4 that requires a
replacement in the bank, in which case a bank read and a bank
write are required to happen in sequence. For a GetS/GetM,
the latency to process it is tBANK as only one bank read is
required. For a PutD of type T3, only a bank write is required,
which also takes tBANK to complete. When a request arrives
at its corresponding bank, it needs to wait for at most N − 1
other requests. This is because the bank services the requests
in FCFS order, and there is at most one request from each core.
Thus, at worst, a request needs to wait for (N−1) ·2 · tBANK

before it is serviced when the bank is busy processing other
N −1 PutD of T4. Combined with the processing time of rua
itself, the WCL in BANK is (2N−1) ·tBANK for GetS/GetM
and 2 ·N · tBANK for PutD.

Lemma 3. The WCL in RESP is N · tRESP .

Proof. The OA arbiter guarantees that a ready response to the
oldest request is sent first. There can be at most N ready
responses in the system since each core issues at most one
request at a time. At worst, the response of rua is associated
with the largest request ID among the N ready responses.
In this case, the response to rua needs to first wait for the

other N − 1 responses to be sent, taking (N − 1) · tRESP ,
then it is serviced, taking tRESP . This WCL guarantee holds
because any newly generated response must be associated with
a larger request ID and cannot delay sending the response to
rua. In some cases, multiple requests are serviced by the same
response if all of them directly depend on the same request.
When this happens, this clearly only shortens the latency to
send the response to rua and does not change the bound.

Lemma 4. If rua is a Get request (GetS/GetM), its WCL is
(N + 1) · tREQ + (2N − 1) · tBANK + tMEM +N · tRESP .

Proof. By cases, if rua directly depends another request.
Case (1): rua does not directly depend on any other request. In
this case, rua immediately moves to the next resource once it
finishes processing on the current one. Therefore, we can sum
the WCL in each resource to obtain a safe upper bound on
the overall WCL. Note that Lemmas 1-3 compute the WCL of
REQ, BANK, and RESP, while the WCL in MEM is tMEM as
defined in the system model. The worst case happens when rua
belongs to type T4 which requires all four types of resource,
yielding the bound in the lemma.
Case (2): rua directly depends on another request. Note that
since rua directly depends on a request, by definition there
must exist a request, call it rp, such that rua eventually
depends on rp. We divide the latency components of rua into
two parts as shown in Figure 8: L1 is the interval between the
time rua arrives at REQ to the time rp arrives at the response
bus, and L2 is the interval between the time rp arrives at RESP
to the finish time of rua.

Bounding L1: We do a case analysis whether rp directly
depends on another request. (2.1): rp directly depends on
another request rq . Note that by definition, rua does not
eventually depend on rq . It means that rq must have already
completed when rua finishes at REQ, which further implies
that the response to rp must be ready by the time rua finishes
at REQ. Therefore, L1 is bounded by the request bus latency
of rua, which is (N+1)·tREQ as shown in Lemma 1. (2.2): rp
does not directly depend on another request. By the definition
of request dependency, rp must have finished on REQ before
rua. Therefore, L1 can be bounded by summing the WCL of
rua in REQ, and the WCL of rp in BANK and MEM, which
is (N + 1) · tREQ + (2N − 1) · tBANK + tMEM .

Bounding L2: At the start of L2, there can be at most N−1
requests older than rua waiting to be completed at RESP since
each core issues at most one request at a time. Among the
N − 1 requests, there are requests that form the dependency
chain from rp to rua and requests that do not belong to this
dependency chain. For the requests in the dependency chain,
once a prior request finishes at RESP, the response to the
next request in the dependency chain becomes ready. For the
requests that do not belong to the dependency chain, in the
worst case all of them can be ready at RESP and arbitrated
before rua. Therefore, based on the operation of the OA
arbiter, responses to requests that are younger than rua cannot
be sent during interval L2. It follows that L2 must be bounded

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

Fig. 8: Latency components of rua in case 2 of Lemma 5.

by N · tRESP , the time required to service the N − 1 older
requests first and then rua.

Finally, summing the bounds for L1 and L2 yields the same
bound as in Case (1), thus completing the lemma.

Lemma 5. If rua is a PutD request, its WCL is (N + 1) ·
tREQ + 2N · tBANK + tMEM +N · tRESP .

Proof. Since a PutD request cannot depend on another re-
quest, the proof follows the same reasoning as in Case (1) of
Lemma 4. In the worst case, rua belongs to type T4; summing
the WCL in each resource based on Lemmas 1-3 and the
definition of tMEM yields the result.

Theorem 1. The WCL of coherence requests generated by a
load or store instruction is (2N + 2) · tREQ + (4N − 1) ·
tBANK + 2 · tMEM + 2N · tRESP .

Proof. At worst, a core load or store instruction requires two
coherence requests to complete in sequence. This happens for
a load/store miss when the L1 cache does not have space for
the new cache line. In this case, the cache controller needs to
issue a Put request first to evict a victim line and then issue
a Get request for the cache line requested by the core. Note
that requests belonging to T1 (Upg/PutS/PutO) have a smaller
latency than requests of other types as T1 requests require
only accessing REQ. Therefore, the WCL can be bounded by
summing the WCL of a PutD request (Lemma 5) and the
WCL of a GetS/GetM request (Lemma 4).

VII. EVALUATION

Experimental setup. We implement PECC in the Gem5
simulator [26]; the source code is publicly available 4. We
simulate a multicore system with up to 8 cores running at
2 GHz. Similar to ARM Cortex R8 [27], the system uses
a private instruction and private data cache per core, both
configured as 16 KiB 2-way set-associative. For the L2 shared
cache, the system employs an 8-way set-associative LLC with
8 internal banks. The default size of the LLC is configured
as 1 MiB. All caches use the least-recently-used (LRU)
replacement policy. For the main memory, we use a single-
port SRAM module that is described in the system model
(Section IV-C). We configure L1 cache hit latency to be 1
clock cycle, tBANK = 10 clock cycles, and tSRAM to be 100
clock cycles. Note that tMEM is 100N cycles accounting for
the interference with at most N outstanding requests in the
system. We perform our evaluation using three protocols as

4https://github.com/caesr-uwaterloo/pecc

follows. (1) PECC with tREQ and tRESP both configured as
3 cycles. (2) ZCLLC from [13]. The TDM slot of ZCLLC
is configured to be the maximum transaction time, which is
tREQ+2 · tBANK + tSRAM + tRESP = 126 cycles. Note that
LLC replacement takes 2 ·tBANK . (3) MOESI protocol with a
conventional inclusive LLC and the same split-bus architecture
as PECC. This setup is denoted as INCL. We configure INCL
to use the same latency parameters as PECC.

Benchmarks. Our evaluation uses a synthetic benchmark and
the Splash-3 benchmark suite [28]. The synthetic benchmark
stresses the protocol behaviour to explore the WCL using
crafted memory traces. In particular, it constructs memory
traces following the pattern in Figure 2. We also use the
Splash-3 benchmark suite as a representative workload of
multicore programming on shared data. The protocol cor-
rectness is verified by the internal data consistency check
of the synthetic benchmark, as well as ensuring that correct
outputs are computed in Splash-3 benchmarks. Note that some
Splash-3 benchmarks (barnes, fmm, radiosity, water-nsquared,
water-spatial and lu) are designed to have the working set fit
in L1 regardless of the program input size [29]. We call these
benchmarks as LLC-insensitive because they do not apply
enough memory pressure to the LLC; thus, showing limited
performance improvement when increasing the LLC size in all
setups. On the other hand, the rest of the benchmarks (ocean,
raytrace, cholesky, fft and radix) do not have their working
sets fit in L1 and are LLC-sensitive. Splash-3 benchmarks
also contain atomic instructions for fast synchronization. To
support that, in our Gem5 implementation of PECC, the atomic
instruction is treated as a special store instruction that keeps
the cache line in the M state until it completes. The simulation
setup allows the atomic instruction to finish quickly once the
cache line is acquired in the M state. Therefore, its timing
effect is subsumed in the case of store instructions.

A. WCL for Load/Store Instructions

We first evaluate the WCL for load and store instructions
over various setups. Figure 9 and Figure 10 report the observed
WCL when varying the number of cores for the synthetic
workload and Splash-3 workload, respectively. A solid bar de-
notes the observed WCL, while the T bar marks the analytical
bound. We do not provide the analytical bound for INCL since
this is a conventional design without predictability in mind.

Fig. 9: Observed WCLs of synthetic benchmark.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

Fig. 10: Observed WCLs of Splash3

Fig. 11: Average execution time speedup of Splash-3. Baseline is ZCLLC with 256 KiB capacity.

Observations. In the synthetic workload, the observed WCL
of INCL grows faster than the analytical bounds of PECC
and ZCLLC, both of which scale linearly in the number of
cores. However, the observed WCL of INCL under synthetic
workload is much larger than the one under Splash-3. The
reason is that the synthetic workload is designed to induce
the worst-case request pattern described in Section III, which
results in quadratic-scaling WCL. However, this scenario was
not exercised in Splash-3. Both Splash-3 and synthetic results
confirm that the observed WCLs of PECC and ZCLLC fall
safely within their analytical bounds. Note that, in PECC, the
gap between the observed WCL and the analytical WCL is
caused by the pessimism in the analysis. Nonetheless, the
analytical bound of PECC for an 8-core system is still 6%
smaller than ZCLLC.

B. Average Performance

We use Splash-3 to study average performance benefits from
employing an LLC of varying size. We fix the core count
to 8 and set the LLC size to either 256 KiB, 512 KiB or
1024 KiB. Note that for inclusive LLC, the effective LLC
size is the LLC capacity minus the total private cache capacity.
Therefore, compared to PECC, for both ZCLLC and INCL,
the effective LLC size is 0 (100% reduction), 256 KiB (50%
reduction), 768 KiB (25% reduction) respectively for the LLC
size of 256 KiB, 512 KiB, and 1024 KiB. Figure 11 reports
the execution time speedup of Splash-3 benchmarks with the
baseline of 256-KiB ZCLLC.

Observations. When comparing against ZCLLC, the average
performance of INCL and PECC are similar and both out-
perform ZCLLC (geomean speedup of 2.30× for INCL and
2.33× for PECC with a 1MiB LLC). Although not reported in
the figure, we confirmed that ZCLLC’s slowdown is due to the
higher average miss latency rather than the L1 hit rate differ-
ence. The high average miss latency in ZCLLC is because

of the unified arbitration for all shared resources resulting
in a large TDM slot. This prevents any shared resource to
be utilized even though the current slot owner completes a
transaction much sooner (e.g. LLC hit). For instance, consider
the benchmark raytrace, the most memory-intensive bench-
mark, as an extreme example. With a 1MiB LLC, the average
miss latency of ZCLLC is 1957 cycles, which is close to its
analytical bound of 2142 cycles. In stark contrast, the average
miss latencies of PECC and INCL, where hardware parallelism
is not limited by the bus architecture and arbitration design,
are only 77 and 83 cycles, respectively. Also, the result that the
performance of ZCLLC does not improve with a larger LLC
for LLC-sensitive benchmarks further emphasizes this obser-
vation. Different from ZCLLC, in LLC-sensitive benchmarks,
both INCL and PECC show performance improvements with
increased LLC capacity. Compared to INCL, the performance
gain of PECC has a positive correlation with the extra effective
LLC capacity that PECC has over INCL, which reaches the
maximum when the LLC size is the smallest (i.e. 256 KiB)
and decreases with greater LLC capacity.

VIII. CONCLUSIONS

We present an alternative to using an inclusive hierarchy
with a shared LLC for multicores used in safety-critical
systems. This alternative, PECC, uses an exclusive cache
hierarchy with a split-transaction bus, and a novel MOESI-
based cache coherence protocol that lowers the WCL bound
by 6% and improves the average-case performance by 2.33×
when compared to the state-of-the-art approach [13].

ACKNOWLEDGMENTS

This work has been supported in part by NSERC. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and do not
necessarily reflect the views of the sponsors.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

REFERENCES

[1] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst, “Commu-
nication Centric Design in Complex Automotive Embedded Systems,”
in 29th Euromicro Conference on Real-Time Systems (ECRTS 2017), ser.
Leibniz International Proceedings in Informatics (LIPIcs), M. Bertogna,
Ed., vol. 76. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017, pp. 10:1–10:20.

[2] R. L. Alena, J. P. Ossenfort, K. I. Laws, A. Goforth, and F. Figueroa,
“Communications for Integrated Modular Avionics,” in 2007 IEEE
Aerospace Conference, 2007, pp. 1–18.

[3] J. Nowotsch and M. Paulitsch, “Leveraging Multi-core Computing
Architectures in Avionics,” in 2012 Ninth European Dependable Com-
puting Conference, 2012, pp. 132–143.

[4] J. P. Cerrolaza, R. Obermaisser, J. Abella, F. J. Cazorla, K. Grüttner,
I. Agirre, H. Ahmadian, and I. Allende, “Multi-Core Devices for Safety-
Critical Systems: A Survey,” ACM Comput. Surv., vol. 53, no. 4, aug
2020.

[5] M. Chisholm, N. Kim, B. C. Ward, N. Otterness, J. H. Anderson, and
F. D. Smith, “Reconciling the Tension Between Hardware Isolation and
Data Sharing in Mixed-Criticality, Multicore Systems,” in 2016 IEEE
Real-Time Systems Symposium (RTSS), 2016, pp. 57–68.

[6] M. Hassan, A. M. Kaushik, and H. Patel, “Predictable Cache Coherence
for Multi-core Real-Time Systems,” in 2017 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2017, pp.
235–246.

[7] A. M. Kaushik and H. Patel, “A Systematic Approach to Achieving Tight
Worst-Case Latency and High-Performance Under Predictable Cache
Coherence,” in 2021 IEEE 27th Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2021, pp. 105–117.

[8] S. Hessien and M. Hassan, “PISCOT: A Pipelined Split-Transaction
COTS-Coherent Bus for Multi-Core Real-Time Systems,” ACM Trans.
Embed. Comput. Syst., vol. 22, no. 1, oct 2022.

[9] M. Hossam and M. Hassan, “Predictably and Efficiently Integrating
COTS Cache Coherence in Real-Time Systems,” in 34th Euromicro
Conference on Real-Time Systems (ECRTS 2022), ser. Leibniz Inter-
national Proceedings in Informatics (LIPIcs), M. Maggio, Ed., vol. 231.
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022, pp. 17:1–17:23.

[10] R. Mirosanlou, M. Hassan, and R. Pellizzoni, “Parallelism-Aware High-
Performance Cache Coherence with Tight Latency Bounds,” in Euromi-
cro Conference on Real-Time Systems (ECRTS 2022). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022.

[11] Z. Wu and H. Patel, “Predictable Sharing of Last-Level Cache Partitions
for Multi-Core Safety-Critical Systems,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, ser. DAC ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 1273–1278.

[12] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pel-
lizzoni, “A Survey on Cache Management Mechanisms for Real-Time
Embedded Systems,” ACM Comput. Surv., vol. 48, no. 2, nov 2015.

[13] Z. Wu, A. M. Kaushik, and H. Patel, “ZeroCost-LLC: Shared LLCs
at No Cost to WCL,” in 2023 IEEE 29th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2023, pp. 1–1.

[14] V. Nagarajan, D. J. Sorin, M. D. Hill, D. A. Wood, and N. E. Jerger, A
Primer on Memory Consistency and Cache Coherence, 2nd ed. Morgan
Claypool Publishers, 2020.

[15] P. Sweazey and A. J. Smith, “A Class of Compatible Cache Consistency
Protocols and Their Support by the IEEE Futurebus,” SIGARCH Comput.
Archit. News, vol. 14, no. 2, p. 414–423, may 1986.

[16] J. Sim, J. Lee, M. K. Qureshi, and H. Kim, “FLEXclusion: Balanc-
ing Cache Capacity and on-Chip Bandwidth via Flexible Exclusion,”
SIGARCH Comput. Archit. News, vol. 40, no. 3, p. 321–332, jun 2012.

[17] “Intel Core i9-13900 Processor,” https://www.intel.ca/content/www/ca/
en/products/sku/230499/intel-core-i913900-processor-36m-cache-up-
to-5-60-ghz/specifications.html, accessed on July 5, 2023.

[18] Software Optimization Guide for the AMD Zen4 Microarchi-
tecture, 1st ed., https://www.amd.com/en/support/tech-docs/software-
optimization-guide-for-the-amd-zen4-microarchitecture, AMD, 2023.

[19] Arm Cortex-R82 Processor Technical Reference Manual, r0p2 ed.,
https://developer.arm.com/documentation/101548/0002/The-Cortex-
R82-processor, ARM, 2022.

[20] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi, “A Survey on
Static Cache Analysis for Real-Time Systems,” Leibniz Transactions on
Embedded Systems, vol. 3, no. 1, p. 05:1–05:48, Jun. 2016.

[21] D. Hardy and I. Puaut, “WCET analysis of instruction cache hierar-
chies,” Journal of Systems Architecture, vol. 57, no. 7, pp. 677–694,
2011, special Issue on Worst-Case Execution-Time Analysis.

[22] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping the Intel
Last-Level Cache,” Cryptology ePrint Archive, Paper 2015/905, 2015.

[23] ARM CoreLink CCI-550 Cache Coherent Interconnect, Technical
Reference Manual, r1p0 ed., https://developer.arm.com/documentation/
100282/0100, ARM, 2018.

[24] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek, “Intel® Quick-
Path Interconnect Architectural Features Supporting Scalable System
Architectures,” in 2010 18th IEEE Symposium on High Performance
Interconnects, 2010, pp. 1–6.

[25] D. Hackenberg, D. Molka, and W. E. Nagel, “Comparing Cache
Architectures and Coherency Protocols on X86-64 Multicore SMP
Systems,” in Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 42. New York, NY,
USA: Association for Computing Machinery, 2009, p. 413–422.

[26] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, p. 1–7,
aug 2011.

[27] Arm Cortex-R8 MPCore Processor, r0p3 ed., https://developer.arm.com/
documentation/100400/0003/revisions, ARM, 2019.

[28] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A
properly synchronized benchmark suite for contemporary research,”
in 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2016, pp. 101–111.

[29] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-
2 programs: characterization and methodological considerations,” in
Proceedings 22nd Annual International Symposium on Computer Ar-
chitecture, 1995, pp. 24–36.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

X. Wang, Z. Wu, R. Pellizzoni, and H. Patel, “Exclusive Hierarchies for Predictable Sharing in Last-level Cache,” in proceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), May 2024, pp. 1–11.

https://www.intel.ca/content/www/ca/en/products/sku/230499/intel-core-i913900-processor-36m-cache-up-to-5-60-ghz/specifications.html
https://www.intel.ca/content/www/ca/en/products/sku/230499/intel-core-i913900-processor-36m-cache-up-to-5-60-ghz/specifications.html
https://www.intel.ca/content/www/ca/en/products/sku/230499/intel-core-i913900-processor-36m-cache-up-to-5-60-ghz/specifications.html
https://www.amd.com/en/support/tech-docs/software-optimization-guide-for-the-amd-zen4-microarchitecture
https://www.amd.com/en/support/tech-docs/software-optimization-guide-for-the-amd-zen4-microarchitecture
https://developer.arm.com/documentation/101548/0002/The-Cortex-R82-processor
https://developer.arm.com/documentation/101548/0002/The-Cortex-R82-processor
https://developer.arm.com/documentation/100282/0100
https://developer.arm.com/documentation/100282/0100
https://developer.arm.com/documentation/100400/0003/revisions
https://developer.arm.com/documentation/100400/0003/revisions

	Introduction
	Background
	Hardware Cache Coherence
	Inclusive and Exclusive Policies of Cache Hierarchies

	Related Work and Motivation
	System Model
	Processing Cores and Cache Hierarchy
	Coherent Interconnect
	Main Memory

	Predictable Exclusive Cache Coherence
	PECC Protocol
	Bus Arbitration

	Analytical Worst-case Bound Derivation
	Request Processing Model
	Analysis

	Evaluation
	WCL for Load/Store Instructions
	Average Performance

	Conclusions
	References

