
PASoC: A Predictable Accelerator-rich SoC
Susmita Tadepalli

University of Waterloo

Waterloo, Ontario, Canada

susmita.tadepalli@uwaterloo.ca

Zhuanhao Wu

University of Waterloo

Waterloo, Ontario, Canada

zhuanhao.wu@uwaterloo.ca

Hiren Patel

University of Waterloo

Waterloo, Ontario, Canada

hiren.patel@uwaterloo.ca

ABSTRACT
We present a model of a predictable accelerator-rich system-on-chip

(PASoC) for safety-critical systems. The PASoC allows the integra-

tion of multiple coherent agents to interact with each other over a

sharedmemory bus. These agents can be a cluster of cache-coherent

homogeneous cores, and fully or one-way coherent hardware ac-

celerators. PASoC supports predictable cache coherence within the

cluster of cores, and across agents. The former uses linear cache

coherence, and the latter uses a modified version of predictable MSI.

We analyze the per-request worst-case latency, a memory request

from any of the agents can experience in the PASoC. Finally, we

present some observations based on our analysis that can help in

future designs of PASoCs.

CCS CONCEPTS
• Computer systems organization → Real-time system archi-
tecture; Heterogeneous (hybrid) systems; System on a chip.

KEYWORDS
Predictability, SoCs, Hardware accelerators, Safety-critical systems

ACM Reference Format:
Susmita Tadepalli, Zhuanhao Wu, and Hiren Patel. 2023. PASoC: A Pre-

dictable Accelerator-rich SoC. In Cyber-Physical Systems and Internet of

Things Week 2023 (CPS-IoT Week Workshops ’23), May 9–12, 2023, San Anto-
nio, TX, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/

3576914.3587496

1 INTRODUCTION
Modern system-on-chips (SoCs) combine general-purpose multi-

cores with one or more hardware accelerators. These hardware

accelerators offer high performance for domain-specific algorithms.

Common hardware accelerators include those that implement vi-

sion processing and deep learning [16]. While much of the early

adoption of such accelerator-rich SoCs (ASoCs) was in the domain

of general-purpose embedded computing, ASoCs are steadily being

adopted in safety-critical systems as well. One popular use case is

in autonomous driving where a combination of clusters of cores are

interconnected with hardware accelerators for vision processing

and deep learning. Naturally, industries are also designing specific

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CPS-IoT Week Workshops ’23, May 9–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0049-1/23/05. . . $15.00

https://doi.org/10.1145/3576914.3587496

SoCs for autonomous driving that are accelerator-rich. For example,

NVIDIA’s DRIVE AGX Orin SoC promotes itself to be specifically

designed for next-generation autonomous driving [3].

A key challenge in designing ASoCs involves deciding the man-

ner in which the accelerators interact with the other agents within

the ASoC. An agent can be a multicore cluster or a hardware ac-

celerator. Such decisions involve determining the coupling of the

accelerators via interconnect with other agents and their coher-

ence modes in accessing the shared memory [16]. The coupling

refers to how loosely or tightly interconnected the accelerators

are with other agents in the ASoC. For example, CXL [1] connects

accelerators with other agents in the system via the system bus.

The coherence modes dictate the coherence activity the accelera-

tors respond to in accessing the shared memory. Examples include

one-way coherent and fully-coherent.

This particular challenge has resulted in industry-proposed so-

lutions that focus on integrating accelerators on an SoC via cache-

coherent interconnect standards such as the CXL [1] and ACE [17].

It has also resulted in exciting academic research discussing the

modes of cache coherence best suited for the application [19].

We find that there has been limited exploration on the predictabil-

ity of such ASoCs [15] [9]. Predictability is an important require-

ment for safety-critical systems as it enables analyses to compute

worst-case execution time for applications that are deemed critical.

In this paper, we attempt to take some initial steps towards explor-

ing the design of a predictable ASoC (PASoC). Our presented PASoC

consists of multiple agents interacting over the shared memory bus

that share a last-level cache (LLC).

In this paper, we mainly concentrate our efforts on analyzing

the worst-case access latency (WCL) of a memory request from any

agent in the PASoC.

Our main contributions to this work are as follows.

• We model a predictable accelerator-rich SoC architecture

(PASoC). This PASoC integrates multiple coherent agents

together that share a LLC. These agents consist of hardware

accelerators and clusters of predictable cores [8]. Each agent

in the PASoC can support one of the two cache coherence

modes: fully-coherent or one-way coherent.

• PASoC provides support to accelerators for coherence modes

by employing state-of-the-art proposals on predictable cache

coherence and combining them together. Specifically, PASoC

uses linear coherence [13] within cluster and predictable

modified-shared-invalid (PMSI) [10] between the agents.

• We present an analysis that computes the WCL of a memory

access from any of the agents in the PASoC. Through this

analysis, we identify opportunities to improve the design of

future PASoCs for safety-critical systems.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3576914.3587496

S. Tadepalli, Z. Wu, and H. Patel, “PASoC: A Predictable Accelerator-Rich SoC,” in Proceedings of Cyber-Physical Systems and Internet of Things Week
2023, New York, NY, USA, 2023, pp. 325–330. doi: 10.1145/3576914.3587496.

https://orcid.org/ABAC2
https://orcid.org/0000-0003-3272-062X
https://orcid.org/0000-0003-2750-4471
https://doi.org/10.1145/3576914.3587496
https://doi.org/10.1145/3576914.3587496
https://doi.org/10.1145/3576914.3587496

2 RELATEDWORK
One-way coherence. One-way coherence, also referred to as I/O

coherence, or coherent DMA [19], is an approach for integrating

an accelerator to an SoC. In one-way coherence, the accelerator

can snoop the private caches of other agents, but does not respond

to any coherence activity by other agents in the system.

Predictable hardware cache coherence. Hardware cache coher-

ence (HCC) mechanisms deploy a set of rules to ensure that cores

access the correct version of data at all times. A predictable HCC

mechanism ensures predictability of a memory request with defined

WCL bound. Prior works on designing predictable HCC have cer-

tain requirements. First, the implementations should honour certain

invariants. Second, several architectural and coherence protocol

changes must be made in the system to ensure predictability of a

memory request, and also to improve its WCL bound [10] [18] [13].

PMSI. For example, PMSI [10] utilizes a shared command and

data bus with time-division multiplexing (TDM) arbitration for

interconnecting the private caches of cores and the shared memory.

The TDM slot width allows for one data transfer between shared

memory and private cache. With this systemmodel, PMSI identified

sources of unpredictability with a conventional MSI coherence

protocol and proposed minimal architectural changes like adding

first-in-first-out (FIFO) arbitration between requests to the same

cache line in the shared memory and between write-back responses

at every core. PMSI’s analysis showed that per-request WCL bound

scales quadratically with the number of cores in the system because

of coherence activity between all fully-coherent cores.

PMSI’s WCL bound is further improved in linear coherence [13]
via coherence protocol changes and the use of a cache-to-cache
(C2C) data bus to transfer modified data directly between the caches.

Neither of these proposals supports a LLC in the system. Another

approach, PISCOT [12], separated the request bus and the response

bus with different arbitration schemes to achieve improvement of

performance and achieving a WCL that is linear with respect to the

number of cores. A recent work, ROC [18] highlighted the unpre-

dictable behavior due to back-invalidations in multicore systems

with inclusive shared LLC. ROC deployed a set sequencer hardware
architecture to prevent the unbounded WCL. To our knowledge,

all these predictable HCC mechanisms are designed for CPU multi-

cores with fully-coherent data sharing. Authors in CoMPSoC [9]

proposed a predictable SoC platform template that removed all

interference between applications through resource reservations.

However, their SoC does not include caches, sharing of caches and

coherence. Further, none of these works studies the predictability

of HCC mechanisms when integrating hardware accelerators with

different coherence modes with a predictable multicore system.

Coherence for heterogeneous platforms. There are various

standards and commercial solutions that support coherent data

sharing among CPU clusters and accelerators. For example, ARM’s

AMBA standard [17] has the AXI Coherence Extension (ACE) for

full coherence in accelerators and accelerator coherency port (ACP)

for I/O coherency in accelerators. The CXL standard [1] utilizes

PCIe physical layer to provide coherence across the host processor

and the accelerators, supporting both fully-coherent and one-way

upper level

One-way
Accelerator

Fully-coherent
Accelerator an…

Accelerator
Core

Private
Memory

CDRF
CFRF

L1I$/L1D$

Core c1

W
CR

R

c1 c2 c ECP…

cache to cache

Data Bus
Command Bus TDM

Arbiter
L2

L2$

L2PRL
ADRF
AFRF

Controller

W
CR

R

Set sequencer

n

TDM
Arbiter
LLC

Data Bus

…
Command Bus

Controller LLCPRL
LLCSet sequencer

Controller
Main Memorylower level

CDRF
CFRF

L1I$/L1D$

Core c1

W
CR

R c1 ECP

Data Bus
Command Bus TDM

Arbiter
L2

L2$

L2PRL
ADRF
AFRF

Controller

W
CR

R

Set sequencer

a2CPU Cluster a1 a3

1

2 3 4

23
24

11

19

5

6

7

8
9

10

12
13

14

16
15 17 18

20 21

22

Figure 1: Diagram of system model

coherent accelerators. The industrial adoption of accelerator coher-

ence has resulted in concrete platforms such as NVIDIA’s Tegra [2]

that features I/O coherence between the processor and the GPU,

Xilinx’s Zynq Ultrascale+ [5] that adopts the AMBA standards pro-

viding coherence between ARM cores and the FPGA, and Intel’s

Agilex [7] that supports coherence between the x86 cores and the

FPGA with CXL. Research projects such as embedded scaleable

platform (ESP) [14] integrates accelerators with fully-coherent or

non-coherent modes, where Cohmeleon [19] further enables dy-

namic coherence mode changes. Other works [4, 6] provide ways

to integrate accelerators, such as GPUs, into a fully-coherent multi-

core systems, and enable fully-coherent data sharing among cores

and the accelerators. However, these approaches do not consider

predictable HCCmechanisms, which are essential for safety-critical

systems. Consequently, these platforms do not strive to guarantee

that the per-request WCL of a memory request is bounded. Hence,

we present a model of a PASoC, which guarantees per-request WCL

bound for any shared cache-coherent access in the system. We

deploy some minimal architectural and cache coherence protocol

changes from conventional ASoCs to prevent unbounded WCLs.

3 SYSTEM MODEL
PASoC setup. We employ Figure 1 to guide our system model.

We assume our predictable accelerator-rich SoC to have 𝑁𝐴 agents

that share a LLC (1). An agent can be one of the following: (1) a

cluster of homogeneous predictable cores [8] (CPU cluster 𝑎1 2);
(2) a fixed-function one-way coherent accelerator (𝑎2 3) ; or, (3)
a fixed-function fully-coherent accelerator (𝑎3 4). A CPU clus-

ter and a fully-coherent accelerator are both fully-coherent agents

(FCAs), and a one-way coherent accelerator is one-way coherent

agent (OCA). Accelerators have only one processing element in it

whereas a CPU cluster have multiple predictable cores. For brevity,

we assume PASoC only supports one CPU cluster and 𝑁𝐴 − 1 accel-

erators, and every agent can make only one outstanding memory

request to the LLC.

Coherent accelerator configurations. We support fully-coherent

and one-way coherent agents as described in this section.

Coherence protocols. We use state-of-the-art predictable coher-

ence protocols to construct PASoC. Within the CPU cluster, we use

2

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3576914.3587496

S. Tadepalli, Z. Wu, and H. Patel, “PASoC: A Predictable Accelerator-Rich SoC,” in Proceedings of Cyber-Physical Systems and Internet of Things Week
2023, New York, NY, USA, 2023, pp. 325–330. doi: 10.1145/3576914.3587496.

a predictable cache coherence protocol called linear coherence [13].

Between the agents, we use PMSI [10]. The main modifications in

PMSI require the OCA to force write-through stores and ignore any

coherence activity on the shared command bus.

Cache hierarchy, inclusion policy and set sequencer.

Cache hierarchy. We assume that all agents in the PASoC share a

LLC. A FCA consists of two-level inclusive cache hierarchy. Each

core in FCA has a private L1 (5) instruction and data cache that

are connected to a shared L2 (6) cache. An OCA does not have a

private cache.We assume all caches in the system are set-associative

write-back caches with a write-allocate policy and least-recently-

used (LRU) replacement policy.

Cache Inclusion. LLC is inclusive of all L2 caches and L2 is inclusive

of of all L1 caches. Suppose that a core’s request to the cache line is

a miss in all its private caches, L2 and the LLC. Then, for the LLC

to respond with the provided data, the LLC must ensure: (1) that

there is a vacant entry in the set that the cache line maps to, (2) the

cache line from main memory is fetched, and (3) the response to the

requesting core is sent in its slot. To create a vacant entry in the set

that is full, the LLC has to evict a victim cache line. An important

property of inclusive caches is that an eviction of a cache line in

the lower-level cache requires eviction of cache lines for the same

address in upper-level caches. This is called back-invalidation (BI).

For our setup, an eviction in LLC forces BIs in both the L1 and L2

private caches of the agents that have the data whereas an eviction

in L2 forces BIs in L1 private cache that have the data.

Set Sequencer. We employ the approach in [18] to enforce the

request ordering constraint (ROC) by deploying a hardware archi-

tecture named set sequencer (7) in each of the L2 caches and the

LLC. The set sequencer orders requests that are mapped to the

same cache set, which prevents a younger request from occupying

a vacant entry in the respective caches that was released for an

older request. This eliminates the unbounded WCL scenario.

Shared-memory bus interconnect. Each requester in PASoC

communicates with shared memory (LLC or L2) via two shared

buses: one for broadcasting commands (command bus) (8 and 23)
and one for transferring data (data bus) (9 and 24). The shared
cache controller accepts requests placed on the command bus and

co-ordinates the necessary actions to complete the request in their

broadcast order (the order received by the cache controller). The

shared cache responds with the data by placing the data on the data

bus. We use work conserving TDM arbitration [11] 𝑇𝐷𝑀𝐿𝐿𝐶 (10)
and 𝑇𝐷𝑀𝐿2 (11) to arbitrate accesses on the shared command bus

to LLC and L2, respectively. We allocate one slot for each requester

to access the shared cache. A TDM slot is long enough to complete

one data transfer between the requester and the shared memory,

and to snoop other coherent caches.

FIFOs and PRLUTs. We use two FIFOs to buffer incoming mes-

sages at each L1 and L2 cache controllers: a Demand request FIFO

(DRF) and a Forward Response FIFO (FRF). A DRF buffers incom-

ing read, write, and write-back requests originating from a core

or agent to L2 or LLC respectively. A FRF buffers the write-back

responses that the core or agent sends to L2 or LLC, respectively.

These write-back responses from L1 cache controller are to the

requests forwarded from other cores within the cluster, or from

other external agents in the PASoC. The write-back responses from

L2 cache controller are only to the requests that are forwarded from

external agents. A predictable arbitration such as work-conserving

round-robin (WCRR) (14) between DRF and FRF chooses from a

request or a write-back response to send on the bus at the begin-

ning of the TDM slot [10]. Note that, an OCA does not have a FRF

because it does not respond to any coherence activity in the system.

Input of L1 cache controller. The DRF and FRF are named as (𝐶𝐷𝑅𝐹)
(12) and (𝐶𝐹𝑅𝐹) (13), respectively. The maximum size of 𝐶𝐷𝑅𝐹 is

1, and 𝐶𝐹𝑅𝐹 is 𝑛𝑐 + 𝑁𝐴 .

Input of L2 cache controller. The DRF and FRF are termed (𝐴𝐷𝑅𝐹)
(15) and (𝐴𝐹𝑅𝐹) (16), respectively. The𝐴𝐷𝑅𝐹 is of size 2𝑛𝑐 , because

at worst, every demand request requires a write-back of a victim

cache line, which is buffered in 𝐴𝐷𝑅𝐹 . 𝐴𝐹𝑅𝐹 is of size 𝑁𝐴 .

PRLUTs. At the L2 within the FCA, and the LLC, we use a FIFO

arbitration between pending requests to the same cache line.We use

a look-up table to queue pending requests (PRLUT) [10]. The PRLUT
queues requests in the order of their arrival at the corresponding

cache.We call the PRLUT at the L2,𝐿2𝑃𝑅𝐿 (18), and at LLC,𝐿𝐿𝐶𝑃𝑅𝐿
(19), respectively.

Fully-coherent agent (FCA). A FCA consists of 𝑛𝑐 homogeneous

cache-coherent predictable cores [8, 13] (20) and an external co-
herency port (ECP) (21) that allows it to receive commands from

agents external to the FCA. In the FCA, the communication among

cores’ caches, ECP and L2 happens using two shared busses and a

direct C2C (22) data bus. The shared command and data bus con-

nects the L1s and ECP to L2. The ECP is only used to relay broadcast

commands from other agents into the FCA. The direct C2C data bus

only connects the L1s [13, 17]. We allocate 𝑛𝑐 + 1 slots to 𝑇𝐷𝑀𝐿2 :

one for each core and one for the ECP. A special case of an FCA is

when 𝑛𝑐 = 1 where there is only one processing element yet it is

fully-coherent with other agents. We further assume that there can

only be one pending memory request from a core or external agent

to L2.

One-way coherent agent (OCA). Similar to [19], we support a

one-way coherent accelerator that does not have a private cache

and is coherent with other cache-coherent agents in the system.

Thus, a read from an OCA retrieves the most up-to-date data. On

a write, the OCA updates the contents in the LLC. Note that a

request from an OCA can cause coherence activity for other agents;

however, the OCA does not respond to any coherence activity itself.

4 WORST-CASE LATENCY ANALYSIS
We derive the per-request WCL of a memory request issued by each

of the following: a core within a CPU cluster with all cores being

cache-coherent, a fully-coherent agent with only one core in it, and

a one-way coherent agent.

4.1 WCL components
We begin by defining the WCL of components that we use to de-

termine the WCL analysis of a memory request. These latency

components represent the WCL for accessing shared caches such

3

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3576914.3587496

S. Tadepalli, Z. Wu, and H. Patel, “PASoC: A Predictable Accelerator-Rich SoC,” in Proceedings of Cyber-Physical Systems and Internet of Things Week
2023, New York, NY, USA, 2023, pp. 325–330. doi: 10.1145/3576914.3587496.

as the L2 and LLC or for granting access to the shared bus by the

arbitration. Due to space constraints, we only describe the intuition

behind the proofs for the worst-case formulations.

Worst-case TDM arbitration latency. We use TDM arbitration

to grant access to the shared caches (L2 and LLC have their own

TDM arbiter). Like several prior works, we assume a TDM schedule

where each requester is granted a slot in a period [10].

Lemma 4.1. TheWCL of a requester accessing a shared cache using
TDM arbitration is given by

𝑊𝐶𝐿𝑇𝐷𝑀𝐴𝑟𝑏 (𝑢, 𝑠) = 𝑢 × 𝑠, (1)

where𝑢 is the number of requesters and 𝑠 is the number of clock cycles
of a slot width.

For any requester to access the shared cache via TDM arbitration,

theWCL occurs when the requester misses the start of the TDM slot

allocated to it, and it has to wait for the TDM arbiter to grant the

requester its next slot. Given that we allocate one slot per requester,

the WCL is simply the product of the number of requesters and the

slot width.

Worst-case intra-core arbitration latency. As described in Sec-

tion 3, when a demand request and a forward response are both

ready in their corresponding FIFOs, the WCRR arbitration picks

one. The other message must wait until the one selected by WCRR

completes before it can be placed on the shared bus to access the

cache. This latency to arbitrate such request and response messages

is termed intra-core arbitration latency.

Lemma 4.2. The WCL of intra-core arbitration of a request from
a core in a FCA is given by𝑊𝐶𝐿𝑖𝑛𝑡𝑟𝑎𝐶𝑜𝑟𝑒𝐴𝑟𝑏 (𝑦) = 𝑦 where 𝑦 is the
number of cycles for a WCRR round.

We assume that when the message is buffered in a FIFO (DRF

or FRF), in the worst case, the WCRR selects a message from the

other FIFO. Hence, it has to wait for its next WCRR round to place

the message on the shared bus. Note that in our system model, the

number of cycles for a WCRR round is the same as the TDM period

to allow access to a lower-level cache, as stated in Lemma 4.1.

Worst-case back invalidation latency. As described in Section 3,

eviction of a victim cache line from an inclusive shared cache re-

quires back-invalidation of the victim cache line privately cached

in all the upper-level caches. The worst-case back invalidation la-

tency accounts for having to perform this BI by a shared cache in

its upper-level caches, so that the victim cache line is ready to be

evicted.

Lemma 4.3. The WCL of BI at a shared cache is given by

𝑊𝐶𝐿𝐵𝐼 (𝑢, 𝑥) = 𝑢 × (2𝑥), (2)

where 𝑥 is the TDM arbitration period for accessing the shared cache,
and 𝑢 is the number of pending write-back responses in upper-level
caches before the write-back of victim cache line.

In the worst case, the core that has the victim cache line in its

private cache can have pending write-back responses queued in

its FRF and the victim cache line write-back is queued last. Thus,

all 𝑢 write-back responses are serviced before the write-back of

the victim cache line. According to Lemmas 4.1 and 4.2, each of

the 𝑢 write-back responses takes two TDM arbitration periods to

complete, when they are ready to be serviced at the front of the

FRF.

Worst-case replacement latency. The worst-case replacement

latency of a memory request is the latency that the demand request

experiences when the cache line is a miss in the shared cache and

requires a victim cache line eviction. Recall from our system model

that we deploy a set sequencer [18] (7) to order the memory

requests to the same cache set and prevent a younger request from

occupying a vacant entry in the shared caches. The worst-case

replacement latency follows directly from [18]:

Lemma 4.4. The WCL of a replacement at a shared cache is

𝑊𝐶𝐿𝑟𝑒𝑝𝑙 (𝑢, 𝑣, 𝑥,𝑚,𝑤) = 𝑢 × (𝑊𝐶𝐿𝐵𝐼 (𝑣, 𝑥) + 𝑤 + 𝑚), (3)

where 𝑢 is the requesters allowed to access the shared cache, 𝑣 is the
number of write-back responses from upper-level caches, 𝑥 is the TDM
arbitration period, 𝑚 is the WCL to fill the vacant entry with the
requested cache line from the lower-level memory, and𝑤 is the WCL
to write-back the victim cache line entry to the lower-level memory.

A memory request 𝑟 experiences the WCL for replacement in

the following scenario. All 𝑢 requesters, which are connected to

the shared cache through the command bus and are capable of

sending a demand request, issue a demand request to the shared

cache to the same cache set that is full (no vacant entries). Since

these requests are to the same cache set, they are enqueued in the

order of arrival into the set sequencer [18]. Each request in the set

sequencer experiences𝑊𝐶𝐿𝐵𝐼 (𝑣, 𝑥) to get the write-back response

from upper-level caches, in the worst case. This write-back response

from the upper-level caches is then written back to the lower-level

memory, which vacates an entry in the targeted cache set. This

allows the shared cache’s controller to then retrieve the data being

requested by 𝑟 and fill in the vacant entry in the cache set. We refer

readers to [18] for a complete proof.

4.2 WCL of request from a core in a CPU cluster
The critical instance of a demand request from a core in a CPU

cluster happens when the request misses in all caches (L1, L2 and

LLC), and experiences the WCL of replacement (Lemma 4.4) in

both the L2 and the LLC. To present the critical instance, we first

concentrate on the critical instance for fetching data from any

shared cache, i.e. L2 and LLC, in Lemma 4.5. We explain the Lemma

with the help of a timing diagram in Figure 2.

Lemma 4.5. The WCL of a demand request fetching data from a
shared cache occurs under the following scenario: (1) The request expe-
riences the WCL of TDM arbitration to access the shared cache; (2) the
request is processed after a write-back request if the request originates
from a core and experiences the WCL of intra-core arbitration; (3)
the request misses in the shared cache and requires a replacement to
vacate an entry in the cache set resulting in back-invalidations and
incurs the WCL of replacement.

For a demand request from a core in a CPU cluster to experience

theWCL, it experiences theWCL at all cache levels, where we apply

Lemma 4.5 to both the L2 and LLC caches.

4

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3576914.3587496

S. Tadepalli, Z. Wu, and H. Patel, “PASoC: A Predictable Accelerator-Rich SoC,” in Proceedings of Cyber-Physical Systems and Internet of Things Week
2023, New York, NY, USA, 2023, pp. 325–330. doi: 10.1145/3576914.3587496.

Figure 2: Timing diagram explaining the WCL of a demand
request from a1, in a system with three cores accessing the
shared cache.

 a1 an
TDM
Arbiter
LLC

Data Bus

…

Command Bus5

Controller LLCPRL
LLCSet sequencer

Controller
Main
Memory

CDRF
CFRF

L1I$/L1D$

Core c1

W
CR

R

c2 ECP
…

cache to cache

Data Bus
Command Bus TDM

Arbiter
L2

L2$
L2PRL

ADRF
AFRF

Controller

W
CR

R

Set sequencer

c n
1

2

3

4

6

7

8

Figure 3: Critical instance scenario.

Corollary 4.6. The critical instance of a demand request from
a core in a CPU cluster occurs when the request misses in L1 and L2,
and LLC, and experiences the WCL in both L2 and LLC.

The intuition behind Corollary 4.6 is that a demand request that

hits in any cache in the cache hierarchy can have its requested data

returned by the cache sooner than if the request is a miss. Note that

a miss must traverse further to the lower-level caches or memory.

Hence, we can use Lemma 4.5 once for the shared L2 cache and

again for the LLC to construct the critical instance such that the

demand request experiences the WCL.

We illustrate the worst-case scenario with the example in Fig-

ure 3. A request from a core gets enqueued in L1’s 𝐶𝐷𝑅𝐹 . This

request misses in L1 resulting in a demand request for the L2. How-

ever, before accessing the L2, a write-back response in 𝐶𝐹𝑅𝐹 may

interfere with this demand request (1) causing the demand request

to experience the WCL of intra-core arbitration. Next, the demand

request gets placed on the command bus with 𝑇𝐷𝑀𝐿2 arbitration.

To get its slot, the request experiences the WCL TDM arbitration

latency (2). Once 𝑇𝐷𝑀𝐿2 grants the request access to the L2, the

request is enqueued in 𝐴𝐷𝑅𝐹 at L2 (3). The L2 processes this

demand request by checking whether the targeted cache set is the

same as prior requests enqueued in the set sequencer. In the worst

case, the request targets a cache set that is also being accessed by

all prior requests in the set sequencer initiated by all other L1s. The

set sequencer orders all prior accesses to the same set first, and

then, the request can access the L2. This can result in a replacement

of a cache line to vacate an entry for the data to be brought in

from the lower-level cache or memory. The request experiences the

WCL of fetching data from the LLC, which constitutes the WCL of

a demand request from the L2, as stated in Lemma 4.4.

Note that the request experiences the same scenario when suf-

fering a miss in the LLC and accessing the main memory; hence,

we can re-apply Lemma 4.5 (5 - 8).
We present the WCL a demand request experiences at the LLC

in Lemma 4.7. 𝑠𝑤𝑥 is the slot width of 𝑇𝐷𝑀𝑥 . 𝐿𝑚𝑒𝑚 is the WCL to

access main memory.

Lemma 4.7. The WCL of a demand request processed at the LLC is

𝑊𝐶𝐿𝐷𝑟𝑒𝑞𝐿𝐿𝐶 =𝑊𝐶𝐿𝑇𝐷𝑀𝐴𝑟𝑏 (𝑁𝐴, 𝑆𝑊𝐿𝐿𝐶)+
𝑊𝐶𝐿𝑖𝑛𝑡𝑟𝑎𝐶𝑜𝑟𝑒𝐴𝑟𝑏 (𝑁𝐴 × 𝑆𝑊𝐿𝐿𝐶)+
𝑊𝐶𝐿𝑟𝑒𝑝𝑙 (𝑁𝐴, 𝑁𝐴, 𝑁𝐴 × 𝑆𝑊𝐿𝐿𝐶 , 𝐿𝑚𝑒𝑚, 𝐿𝑚𝑒𝑚), (4)

The TDM arbitration latency and intra core arbitration arbitration
latency is one𝑇𝐷𝑀𝐿𝐿𝐶 period which is 𝑁𝐴 × 𝑆𝑊𝐿𝐿𝐶 . For the replace-
ment latency at LLC, there are 𝑁𝐴 agents requesting a cache line
in LLC, each back-invalidation may be stalled by 𝑁𝐴 write-back
responses in the worst case. 𝐿𝑚𝑒𝑚 is the WCL to fill in the vacant
entry with the requested cache line from main memory or WCL to
write-back the victim cache line entry to main memory.

We also derive the WCL for performing a write-back from the L2

to the LLC, as required in Lemma 4.4, which follows from the fact

that a write-back request completes in one slot because it does not

require interaction with other agents; hence, it only experiences

arbitration latencies.

Lemma 4.8. The WCL of a write-back request from the L2 to the
LLC is given by

𝑊𝐶𝐿𝑤𝑏𝐿𝐿𝐶 =𝑊𝐶𝐿𝑖𝑛𝑡𝑟𝑎𝐶𝑜𝑟𝑒𝐴𝑟𝑏 (𝑁𝐴 × 𝑆𝑊𝐿𝐿𝐶)+
𝑊𝐶𝐿𝑇𝐷𝑀𝐴𝑟𝑏 (𝑁𝐴, 𝑆𝑊𝐿𝐿𝐶), (5)

We present Theorem 4.9 that gives the WCL of a demand request

that misses in the L1 of a core.

Theorem 4.9. The WCL of a demand request sent from L1 is

𝑊𝐶𝐿𝑡𝑜𝑡𝑎𝑙𝐹𝐶𝐶𝑅𝑒𝑞 =𝑊𝐶𝐿𝑇𝐷𝑀𝐴𝑟𝑏 (𝑛𝑐 + 1, 𝑆𝑊𝐿2)+
𝑊𝐶𝐿𝑖𝑛𝑡𝑟𝑎𝐶𝑜𝑟𝑒𝐴𝑟𝑏 ((𝑛𝑐 + 1)𝑆𝑊𝐿2)+

𝑊𝐶𝐿𝑟𝑒𝑝𝑙 (𝑛𝑐+𝑁𝐴, 𝑛𝑐+𝑁𝐴, (𝑛𝑐+1)𝑆𝑊𝐿2,𝑊𝐶𝐿𝐷𝑟𝑒𝑞𝐿𝐿𝐶 ,𝑊𝐶𝐿𝑤𝑏𝐿𝐿𝐶),
(6)

The TDM arbitration latency and intra-core arbitration arbitration
latency is one 𝑇𝐷𝑀𝐿2 period which is (𝑛𝑐 + 1) × 𝑆𝑊𝐿2. For the
replacement latency at L2, there are 𝑛𝑐 + 𝑁𝐴 cores requesting a cache
line in L2, each back-invalidation may be stalled by 𝑛𝑐 + 𝑁𝐴 write-
back responses in the worst case.𝑊𝐶𝐿𝐷𝑟𝑒𝑞𝐿𝐿𝐶 is the WCL to fill the
vacant entry with the requested cache line from LLC and𝑊𝐶𝐿𝑤𝑏𝐿𝐿𝐶
is the WCL to write-back the victim cache line entry to LLC.

Note that the WCL analysis discussed in this section applies to

fully-coherent agents with a single processing element (𝑛𝑐 = 1).

4.3 WCL for OCA
Recall that an OCA does not have private caches that are coherent

with other agents in the PASoC. A request from an OCA directly

accesses the LLC. Thus, the WCL of a request for an OCA is simply

the WCL to access the LLC as shown in Theorem 4.10.

5

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3576914.3587496

S. Tadepalli, Z. Wu, and H. Patel, “PASoC: A Predictable Accelerator-Rich SoC,” in Proceedings of Cyber-Physical Systems and Internet of Things Week
2023, New York, NY, USA, 2023, pp. 325–330. doi: 10.1145/3576914.3587496.

Theorem 4.10. The WCL of a demand request from an OCA is
given by

𝑊𝐶𝐿𝑡𝑜𝑡𝑎𝑙𝑂𝐶𝐴𝑅𝑒𝑞 =𝑊𝐶𝐿𝑇𝐷𝑀𝐴𝑟𝑏 (𝑁𝐴, 𝑆𝑊𝐿𝐿𝐶)+
𝑊𝐶𝐿𝑟𝑒𝑝𝑙 (𝑁𝐴, 𝑁𝐴, 𝑁𝐴 × 𝑆𝑊𝐿𝐿𝐶 , 𝐿𝑚𝑒𝑚, 𝐿𝑚𝑒𝑚) . (7)

This follows directly from Lemma 4.5. Note that an OCA does not

have a FRF; hence, there is no intra-core arbitration latency involved.

However, a demand request from an OCA my cause coherence

activity in other coherent agents as captured by the WCL of a

replacement, which includes the WCL of back-invalidations.

4.4 Observations
PASoC is our attempt at employing state-of-the-art research in mod-

elling a predictable accelerator-rich SoC with coherent accelerators.

We find that this effort allows us to make observations that may

be beneficial for a future version of PASoC. Specifically, we make

three observations that we hope to further explore.

Back-invalidations. Our WCL analysis revealed that a large

contributor to the WCL was back-invalidations. This is evident

when we expand equations𝑊𝐶𝐿𝑡𝑜𝑡𝑎𝑙𝐹𝐶𝐶𝑅𝑒𝑞 and𝑊𝐶𝐿𝑡𝑜𝑡𝑎𝑙𝑂𝐶𝐴𝑅𝑒𝑞 ,

which show that the WCL of a demand request had 𝑛3𝑐 and 𝑛𝑐𝑁
3

𝐴
components. Therefore, to further reduce the WCL in a PASoC,

we need to explore solutions that either reduce or eliminate the

contributions that back-invalidations introduce to the WCL.

OCA vs. FCA. Our WCL analysis further revealed that the WCL

of a demand request originating from an OCA (𝑊𝐶𝐿𝑡𝑜𝑡𝑎𝑙𝑂𝐶𝐴𝑅𝑒𝑞)

is lower compared to one from an FCA (𝑊𝐶𝐿𝐷𝑟𝑒𝑞𝐿𝐿𝐶). This is

because an OCA employs one-way coherence, which means it

does not respond to coherence activities from other cores. Thus,

there is no need for a forward response FIFO, which eliminates the

𝑊𝐶𝐿𝑖𝑛𝑡𝑟𝑎𝐶𝑜𝑟𝑒𝐴𝑟𝑏 latency that would appear in the WCL for FCA.

While this indicates the benefit of having an OCA with respect to

the WCL, it is a small reduction in the WCL.

We also notice that predictable cache coherence protocols used

for multicores, such as PMSI, are not readily applicable to an OCA.

Specifically, to enable one-way coherence for PMSI, coherence ac-

tivities by agents other than the OCA must be blocked for the

OCA, and the coherence protocol transitions in response to other

agents’ activities must also be removed from the transitions for the

OCA. Further, the protocol must be extended to support coherence

activities as a result from OCA’s write-through to the LLC.

Self-invalidation-based coherence mode. Although PASoC

supports fully-coherent and one-way coherent agents, a common

accelerator that we do not discuss is graphics-processing units

(GPUs). GPUs are widely used in autonomous driving, and a careful

study of their predictability with other agents must be done. GPUs

are particularly unique because they typically use write-through

and self-invalidation-based coherence approaches best suited for

throughput-based applications. However, integrating such coher-

ence approaches with existing predictable coherence approaches

remains unexplored.

5 CONCLUSION
We present a model of a predictable accelerator-rich SoC, PASoC,

that allows the integration of multiple agents with different coher-

ence modes. At the moment, PASoC enables integrating one CPU

cluster of cache-coherent multicores with multiple fully-coherent

and one-way coherent agents. The CPU cluster supports a pre-

dictable cache coherence protocol called linear coherence, and the

coherence protocol between the agents is a modified version of

predictable MSI. We also provide a WCL analysis that shows the

latency a memory request would experience in the worst case when

accessing data from any of the agents. Our future work plans to

extend PASoC to support other forms of accelerators such as GPUs,

and to address the WCL contributions from back-invalidations.

REFERENCES
[1] 2023. Compute Express Link. Retrieved February 3, 2023 from https://www.

computeexpresslink.org/

[2] 2023. Cuda for Tegra. Retrieved Feb 9, 2023 from https://docs.nvidia.com/cuda/

cuda-for-tegra-appnote/index.html

[3] 2023. NVIDIA AGX Orin SoC. Retrieved February 3, 2023 from https://www.

nvidia.com/en-us/self-driving-cars/drive-platform/hardware/

[4] Johnathan Alsop, Matthew D. Sinclair, and Sarita V. Adve. 2018. Spandex: A

Flexible Interface for Efficient Heterogeneous Coherence. In Proceedings of the
45th Annual International Symposium on Computer Architecture (Los Angeles,
California) (ISCA ’18). IEEE Press, 261–274.

[5] Vamsi Boppana, Sagheer Ahmad, Ilya Ganusov, Vinod Kathail, Vidya Rajagopalan,

and Ralph Wittig. 2015. UltraScale+ MPSoC and FPGA families. In 2015 IEEE Hot
Chips 27 Symposium (HCS). IEEE, 1–37.

[6] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, NimaHonarmand,

Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter, and Ching-Tsun Chou. 2011.

DeNovo: Rethinking the Memory Hierarchy for Disciplined Parallelism. In 2011
International Conference on Parallel Architectures and Compilation Techniques.
155–166.

[7] Ilya K Ganusov, Mahesh A Iyer, Ning Cheng, and Alon Meisler. 2020. Agilex™

generation of intel® fpgas. In 2020 IEEE Hot Chips 32 Symposium (HCS). IEEE
Computer Society, 1–26.

[8] Sebastian Hahn and Jan Reineke. 2018. Design and Analysis of SIC: A Provably

Timing-Predictable Pipelined Processor Core. In RTSS.
[9] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken. 2009. CoMP-

SoC: A template for composable and predictable multi-processor system on chips.

ACM Transactions on Design Automation of Electronic Systems (TODAES) 14, 1
(2009), 1–24.

[10] Mohamed Hassan, Anirudh M. Kaushik, and Hiren Patel. 2017. Predictable

Cache Coherence for Multi-core Real-Time Systems. In 2017 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 235–246.

[11] Farouk Hebbache, Florian Brandner, Mathieu Jan, and Laurent Pautet. 2020. Work-

conserving dynamic time-division multiplexing for multi-criticality systems.

Real-Time Systems 56, 2 (2020), 124–170.
[12] Salah Hessien and Mohamed Hassan. 2022. PISCOT: A Pipelined Split-

Transaction COTS-Coherent Bus for Multi-Core Real-Time Systems. ACM Trans.
Embed. Comput. Syst. (jul 2022).

[13] Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel. 2021. Designing

Predictable Cache Coherence Protocols for Multi-Core Real-Time Systems. IEEE
Trans. Comput. 70, 12 (2021), 2098–2111.

[14] Paolo Mantovani et al. 2020. Agile SoC Development with Open ESP (ICCAD
’20). ACM, New York, NY, USA, Article 96, 9 pages.

[15] Francesco Restuccia and Alessandro Biondi. 2021. Time-Predictable Acceleration

of Deep Neural Networks on FPGA SoC Platforms. In 2021 IEEE Real-Time Systems
Symposium (RTSS). 441–454.

[16] Yakun Sophia Shao and David Brooks. 2015. Research infrastructures for hardware
accelerators. Morgan & Claypool Publishers.

[17] Ashley Stevens. 2011. Introduction to AMBA® 4 ACE™ and big. LITTLE™ Process-
ing Technology.

[18] Zhuanhao Wu and Hiren Patel. 2022. Predictable Sharing of Last-Level Cache

Partitions for Multi-Core Safety-Critical Systems. In Proceedings of the 59th
ACM/IEEE Design Automation Conference (San Francisco, California) (DAC ’22).
ACM, New York, NY, USA, 1273–1278.

[19] Joseph Zuckerman et al. 2021. Cohmeleon: Learning-Based Orchestration of Ac-

celerator Coherence in Heterogeneous SoCs. InMICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (Virtual Event, Greece) (MICRO
’21). ACM, New York, NY, USA, 350–365.

6

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1145/3576914.3587496

S. Tadepalli, Z. Wu, and H. Patel, “PASoC: A Predictable Accelerator-Rich SoC,” in Proceedings of Cyber-Physical Systems and Internet of Things Week
2023, New York, NY, USA, 2023, pp. 325–330. doi: 10.1145/3576914.3587496.

https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html
https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Worst-case Latency Analysis
	4.1 WCL components
	4.2 WCL of request from a core in a CPU cluster
	4.3 WCL for OCA
	4.4 Observations

	5 Conclusion
	References

