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Abstract—Many modern programmable embedded devices
contain CPUs and a GPU that share the same system memory
on a single die. Such a unified memory architecture allows the
explicit data copying between CPU and integrated GPU (iGPU)
to be eliminated with the benefit of significantly improving perfor-
mance and energy savings. However, to enable such a “zero-copy”
communication model, many devices either implement intricate
cache coherence protocols or they may disable the last level
caches. This often leads to strong performance degradation of
cache-dependent applications, for which CPU-iGPU data transfer
based on standard copy remains the best solution. This paper
presents a framework based on a performance model, a set
of micro-benchmarks, and a novel zero-copy communication
pattern to accurately estimate the potential speedup a CPU-iGPU
application may have by considering different communication
models (i.e., standard copy, unified memory, or pinned “zero-
copy”). It shows how the framework can be combined with
standard profiler information to efficiently drive the application
tuning for a given programmable embedded device.

Index Terms—CPU-GPU communication, edge computing,
performance tuning, I/O cache coherence

I. INTRODUCTION

Unlike traditional CPU-GPU communication models, which
require copying data from the CPU memory to the GPU mem-
ory and back, zero-copy (ZC) allows CPU and GPU to access
concurrently to a shared memory space. Communication based
on ZC consists of passing data through pointers to the pinned
shared address space. When CPU and the iGPU physically
share the memory space, their communication does not rely
on the PCIe bus and communication through ZC can be even
more efficient [1], [2].

Such a communication model is instrumental for perfor-
mance and energy efficiency in many real-time applications.
Examples are camera- or sensor-based applications, in which
the CPU offloads streams of data to the GPU for high-
performance and high-efficiency processing [1], [2].

On the other hand, zero-copy through shared address space
requires the system to guarantee cache coherency across the
memory hierarchy of the two processing elements. Since
the overhead involved by SW coherency protocols applied
to CPU-iGPU devices may elude the benefit of the zero-
copy communication, many systems address the problem by
disabling the last level caches (LLC) (see Fig. 1.a) [3].

Although zero-copy best applies to many SW applications
(e.g., applications in which CPU is the data producer and the
GPU is the consumer), it often leads to strong performance
degradation when the applications make intensive use of the
GPU cache (i.e., cache-dependent applications). To reduce
such a limitation, more recent embedded devices include
hardware-implemented I/O coherence, by which the iGPU
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Fig. 1: CPU-iGPU communication models.

directly accesses the CPU cache, while the GPU cache is still
disabled (see Fig. 1.b). Even though these solutions limit the
performance loss, traditional communication models based on
data copy, which we call standard copy (SC), are often the
best solution with cache-dependent SW applications. With SC
between CPU and iGPU, the physically shared memory space
is partitioned into different logical spaces and the CPU copies
the data from its own partitions to the iGPU partitions (see
Fig. 1.c). The caches, which are all enabled, hide the data
copy overhead, and cache coherence is guaranteed implicitly
by flushing the caches before and after each GPU kernel
invocation.

To ease the CPU-GPU programming and avoid explicit
data transfer invocations, user-friendly solutions allow the
programmer to implement CPU-iGPU communication through
data pointers. In this communication model, which we call
unified memory (UM), the physically shared memory is still
partitioned into CPU and GPU logic spaces although they are
abstracted and used by the programmer as a virtually unified
logic space. The runtime system maintains cache coherence
through on-demand page migration (see Fig. 1.d) [4].

Choosing the most efficient CPU-iGPU communication
model amongst SC, UM, and ZC depends on both the SW
application characteristics (i.e., compute vs. memory bound,
usage of caches, etc.) as well as the characteristics of the978-1-6654-3274-0/21/$31.00 ©2021 IEEE
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target embedded device. Indeed, the overhead introduced by
the cache coherence driver or the advantages provided by any
I/O coherence implemented in hardware may affect the overall
performance.

In this paper, we present a framework that, through the
use of a set of micro-benchmarks and of a performance
model, analyses the characteristics of the SW application and
the target device to provide the potential performance the
system can reach by changing the communication model.
Switching from one communication model to another is
often a time consuming and error prone task. Even more
challenging is the switching from the models in which
CPU routines and iGPU kernels are implicitly synchronized
(i.e., SC and UM) to the model in which synchroniza-
tion and task overlapping is the responsibility of the pro-
grammer. This framework (which is available for download
at github.com/FrancescoL96/Cache-Benchmark)
endeavours to support the programmer during the development
and tuning of CPU-iGPU applications by proposing the most
suited communication model and, in case of zero-copy, a
communication pattern to best exploit this communication
model’s potential for improved performance.

This work’s main contributions are the key elements of the
framework as summarized next.

• A set of micro-benchmarks to characterize the CPU-iGPU
communication performance of the device. The micro-
benchmarks mix different amounts of computation and
memory accesses on both the CPU and the iGPU to
measure the performance impact of each communication
model on the given embedded device.

• A performance model that combines the information
provided by the micro-benchmarks and by any standard
profiling tool to extrapolate the potential speedup the
system performance can reach by switching from one
model to another.

• A zero-copy communication pattern to enhance the sys-
tem performance by taking advantage of a synchronized
and overlapped execution of CPU and iGPU tasks.

The paper presents the results obtained by applying the
framework to optimize the performance of different real world
edge computing applications for different NVIDIA Jetson
devices (i.e., Nano, TX2, AGX Xavier).

The paper is organized as follows. Section II presents the
related work. Section III presents the the overall framework,
the micro-benchmarks, the performance model, and the zero-
copy communication pattern. Section IV presents the results,
while Section V is devoted to the concluding remarks.

II. BACKGROUND AND RELATED WORK

Cache coherency for GPU accelerators has been investigated
in many research works. In [5], the authors propose a push-
based, coherence mechanism that explicitly exploits the CPU
and GPU’s producer-consumer relationship by automatically
moving data from CPU to GPU’s last-level cache. In [6],
the authors propose a cache coherence protocol designed
for forward-looking multi-GPU systems. HALCONE [7] is a
timestamp-based coherence protocol for multi-GPU systems.
It replaces the compute unit level logical time counters with
cache level logical time counters to reduce coherence traffic.
In [8], the authors propose selective caching, by which they
disallow GPU caching of any memory that would require
coherence updates to propagate between CPU and GPU. A
survey of additional techniques for managing and leveraging
caches in GPUs proposed more in the past is presented in [9].

In contrast to the abovementioned works that propose cache
coherency protocols for CPU-iGPU or multi-node GPUs, we
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Fig. 2: Overview of the proposed framework.

propose a framework to accurately estimate the potential
speedup a CPU-iGPU application may have on a given device
by considering different communication models.

A performance model for tuning GPU applications has
been proposed in [10]. The model relies on a suite of
micro-benchmarks to extrapolate the characteristics of specific
GPU device components (e.g., arithmetic instruction units,
memories, etc.) in terms of throughput, power, and energy
consumption. GPUPerfML [11] combines decision trees and
theoretical analytical models to locate performance bottlenecks
of GPU applications and guide the application optimization.
A comprehensive review of previous works addressing perfor-
mance models for GPUs is presented in [12]. All the analysed
contributions focus on GPU computation and memory access
patterns over different platforms.

Unlike these prior works that target the tuning of GPU
applications (i.e., kernels), the framework proposed in this
work targets the tuning of CPU-iGPU communication on
physically shared memory that, to the best of our knowledge,
has not been addresses in prior works.

III. THE FRAMEWORK

Fig. 2 shows the overview of the proposed framework.
Given a SW application and a target embedded platform, a
standard profiling tool is applied to extrapolate information
on the usage levels of both CPU and GPU caches1.

The idea is that if the application strongly benefits from both
caches, then concurrent accesses of CPU and iGPU on the
pinned shared memory space and thus the ZC communication
model cannot provide the best overall performance. This is
due to the fact that the cache coherence protocol, or the
caches disabled for guaranteeing consistency with the zero-
copy model, may elude the benefit of eliminating the data
copy. In this case, SC or UM are the best solutions. In
contrast, if the cache usage is low on the iGPU, the best model
depends on the CPU cache usage. If the CPU cache usage
is high, ZC could give the best performance if the device
implements a sufficiently efficient cache coherence protocol
(e.g., the hardware I/O coherence of the NVIDIA Jetson AGX
Xavier). Otherwise, SC or UM are likely the best solutions.

In case the application makes low usage of both the CPU
and iGPU caches (i.e., the caches do not affect the appli-
cation performance), ZC could provide at least equivalent

1We consider the last level cache (LLC) for both CPU and iGPU as the
caches involved in data coherency protocols for CPU-iGPU communication.
We consider they are the only caches disabled with zero-copy.
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performance w.r.t. SC and UM. In this case, ZC is gener-
ally preferred, as shown in the experimental results section,
because it can guarantee lower energy consumption due to
the saved data transfers for the copies. The performance
model proposed in this work aims at characterizing such a
cache usage of the application, and correlates this value with
the potential performance of each communication model (see
Section III-A). As a result, considering the application, the
implemented communication model, and the target device,
the framework allows the user to accurately estimate the
potential speedup the application may have by changing the
communication model.

It is important to note that the characteristics of the target
device strongly affect the choice of the best communication
model and the potential speedup achieved from one model to
another. The micro-benchmarks (see Section III-B) aim at ex-
trapolating the device characteristics and accurately estimating
such a potential speedup.

Finally, ZC may provide even better performance if com-
bined with an overlapped execution of CPU and iGPU tasks.
The performance model allows estimating the maximum per-
formance improvement of ZC with task overlapping. We
propose an access pattern to implement such an overlapping
while guaranteeing data consistency (see Section III-C).

A. Profiling and performance model
Given a SW application and an embedded device, we

define the usage of the last level caches (LLC) of the CPU
and iGPU as follows:

CPU CacheusageLL L1(%) = miss rate L1CPU

× (1−miss rate LLCPU )
(1)

GPU CacheusageLL L1(%) =
tn ∗ tsize ∗ (1− hit rate L1GPU )

kernel runtime

×
1

GPU Cachemax throughput
LL L1

(2)
where tn and tsize represent the number of memory transac-
tions and their size, respectively. The definitions assume an
architecture with L2 as LLC. It can be generalized for dif-
ferent memory architectures. The two equations represent, in
percentage, the amount of data that is obtained from the LLC
of the CPU and iGPU, respectively out of all the requested
data from the CPU/iGPU multiprocessors. All the miss/hit rate
information are provided by any standard profiling tool. The
maximum throughput in eqn 2 is extrapolated by the micro-
benchmarks (see Section III-B).

We define the potential speedup a SW application may
have by changing the communication model as follows:

SC/ZCspeedup =
SCruntime

SCruntime − copy time

1 + (CPUtime/GPUtime)

≤ SC/ZCMax speedup

(3)

ZC/SCspeedup =
ZCruntime

ZCruntime

1/[1 + (CPUtime/GPUtime)]
+ copy time

≤ ZC/SCMax speedup

(4)
where SCruntime(ZCruntime) is the execution time of the
SW application with the SC(ZC) communication model.
copy time is the time spent for CPU-iGPU data transfer,
CPUtime(GPUtime) is the runtime of the only CPU task
(GPU kernel).

SC/ZCMax_speedup and ZC/SCMax_speedup represent the
maximum speedup that can be obtained by moving from
one model to another on the given device. These values are
independent from the application and are extrapolated by the
micro-benchmarks. Eqn. 3 defines the potential speedup an
application that has been classified as not cache-dependent
(first checks of the framework flow) may have by replacing
the originally implemented SC model with ZC. It takes into
account the SC runtime from which the data copy time is
removed and the potential overlap between CPU and iGPU
computation (CPUtime/GPUtime).

Eqn. 4 defines the potential speedup an application classified
as cache-dependent may have by switching from ZC to SC. It
takes into account the overall time needed by SC to explicitly
copy data. It also considers the serialization of the CPU and
iGPU tasks since their overlapping is not allowed in SC. It
is important to note that if an application is cache dependent
and originally implemented with SC, the framework does not
suggest any change to the communication model and any
further potential speedup.

For the sake of space and without loss of generality, we
consider the performance of UM similar to SC. In all our
micro-benchmarks, the maximum difference between the two
model performance ranges between ±8% in all the considered
devices. The difference is strictly related to the driver imple-
mented for the on-demand page migration. Compared to the
difference between SC(UM) and ZC, we consider negligible,
in this paper, the difference of performance between SC and
UM. It is also important to note that the programming effort to
switch between these two models (SC and UM) is minimum.

B. Micro-benchmarks
The micro-benchmark code is implemented with the aim of

satisfying four main properties.
• Stressing capability. The micro-benchmarks apply exten-

sive and heavy workloads to the memories and caches.
This allows the framework to reach the steady state in
which each functional component is fully work-loaded
to measure the real (w.r.t. theoretical) peak performance
while minimizing the side effects that can incur through-
out the measurements.

• Workload variability. The communication model and the
corresponding components are stressed with different
workloads. This allows the framework to quantify the
effect of moving from one model to another.

• Selectivity. The micro-benchmarks stress, as much as pos-
sible, only one target functional component at the time.
This allows the framework to extrapolate the potential
speedup obtained by moving from one communication
model to another, considering that they can involve dif-
ferent functional components.

• Portability. The micro-benchmarks are implemented in-
dependently from any CPU/iGPU platform.

Since the compiler may optimize the code (e.g., code-block
reordering, dead code elimination, etc.) and, by means of the
consequent side effects, it may affect the target properties, the
code has been checked and refined throughout the different
steps of the compilation process.

The first micro-benchmark aims at finding the peak
throughput of the GPU LL-L1 cache on the target device
(GPU Cachemax throughput

LL L1 ). This value allows accurately
classifying an application as GPU cache dependent/not cache-
dependent (see eqn. 2). Then, in case the application is cache
dependent and originally implemented with the ZC model, this
value is used to estimate the potential speedup obtained by
switching from ZC to SC (ZC/SCMax_speedup in equation
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Fig. 3: Second micro-benchmark results on an NVIDIA Jetson
Xavier. Relationship between LL L1 throughput and kernel
times of the iGPU.

4). It implements the elaboration of a matrix data structure
computed by both CPU and GPU. In particular, the CPU per-
forms a series of floating point operations with data read and
written from and to a single memory address. These operations
include square roots as well as divisions and multiplications.
The GPU performs a 2D reduction multiple times through
linear memory accesses. This is achieved through iterative
loading of the operands (i.e., ld.global instructions), a
sum (i.e., add.s32), and the result store (st.global). The
two classes of operations (CPU and iGPU) allow the micro-
benchmark to evaluate the peak usage of the CPU and iGPU
caches. The two routines (CPU and GPU) are evaluated by
considering the three communication models. ZC makes use
of the concurrent execution of the routines and the concurrent
access to the shared data structure. SC and UM explicitly
exchange the data structure before the routine computation.

The second micro-benchmark implements extensive GPU
computations, with varying levels of linear memory ac-
cesses. It aims at finding the GPU cache thresholds
(GPU CacheThreshold) used by the framework to suggest the
best communication model between ZC and SC/UM (see Fig.
2). The micro-benchmark routine accesses sections of different
length of a fixed-size array (e.g., from 1/4000 to 1/2), through
a single ld.global and st.global, combined with a
fma.rn (i.e., fused multiply-add) that uses two locally calcu-
lated values. It is implemented with both ZC and SC commu-
nication models and extrapolates the GPU CacheThreshold

value by comparing the LL-L1 caches. Fig. 3 shows, for
example, this micro-benchmark results for an NVIDIA Jetson
Xavier, in which the threshold has been found at 1/2000
accesses. A comparable throughput of the two models (from
1/4000 to 1/2000) translates into comparable system runtime
with the two models (see light dotted lines in the figure). From
1/2000 onward, the difference between the throughput values
and the runtime linearly increases. GPU CacheThreshold, in
percentage, is calculated by considering the last comparable
value of the throughput over the peak cache throughput
(GPU Cachemax throughput

LL L1 ) provided by the first micro-
benchmark (i.e., 20 GB/s and 59 GB/s, respectively, for the
SC model in the example). The micro-benchmark extrapolates
the CPU CacheThreshold in a similar way.

The third micro-benchmark performs a balanced
CPU+iGPU computation through a routine whose performance
are fully independent from the GPU cache. The GPU kernel
implements repetitive memory accesses with sufficiently
sparse single read access (ld.global) and single write
access (st.global) in order to guarantee the maximum
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miss rate. It implements a concurrent access pattern (see
Section III-C) and a perfect overlapping of the CPU
and iGPU computations to extrapolate the maximum
communication performance (and thus SC/ZCMax speedup

and ZC/SCMax speedup) the given embedded platform can
provide by considering both SC and ZC.

C. Zero-copy communication pattern
With ZC, data copy is removed while CPU and iGPU access

concurrently to the same pinned logical and physical space.
Concurrent accesses by heterogeneous processors requires
both data consistency and race conditions to be solved by
the programmer. Even though explicit synchronization points
would allow these issues to be easily addressed, the over-
head involved by synchronization strongly affects the overall
system performance. To avoid explicit synchronizations at
every memory access while guaranteeing deterministic results,
we propose a concurrent pattern based on tiling [13], which
is accessed by CPU and iGPU through alternate producer-
consumer phases.

Fig. 4 shows an overview of the communication pattern. An
n-dimensional data structure, where n depends on the problem
(2D matrix for images in the example of Fig. 4), is created
and its size (Widthx ×Widthy) is calculated depending on
the available GPU LL cache. The data structure is partitioned
into data blocks (tiles) which size (Bsize) corresponds to
the smaller size between GPU and CPU LLC cache block
size. This allows each access to a tile to be performed by a
coalesced memory transaction.

CPU-iGPU communication relies on a pipelined sequence
of access phases in which at phase i the CPU first reads and
then writes onto the even blocks while the iGPU reads and
writes on the odd blocks. At phase i+1, even and odd blocks
are inverted for CPU and iGPU.

IV. EXPERIMENTAL RESULTS

We applied the proposed framework for the tuning of two
different real cases of study: An application for the extraction
of centroids in Shack–Hartmann wave front sensors [14] and
an ORB-SLAM application for the simultaneous localization
and mapping [15]. Both the applications have been tuned
for three edge computing devices, i.e., NVIDIA Jetson Nano,
TX2, and AGX Xavier.

A. Device micro-benchmarking
Fig. 5 shows the results of the first micro-benchmark on the

Jetson TX2 and Xavier. ZC has side-by-side bars to show the
overlapping execution. For the sake of space, the results on the
Nano, which are equivalent to those of the TX2, have been
omitted. The figure shows that the execution time of both the
CPU routine and GPU kernel of the micro-benchmark with

© 2021 IEEE.  Personal use of this material is permitted.   Permission from IEEE must be obtained for all other uses,  in any current or future media,  including 
reprinting/republishing this  material for advertising or promotional purposes, creating new collective works,  for resale or redistribution to servers  or lists, or 
reuse of any copyrighted component of this work in other works. 



Kernel: 231,63

Kernel: 75,18

Kernel: 3,29

Kernel: 20,36

Kernel: 3,6

Kernel: 21,7CPU: 121,56

CPU: 167,92

CPU: 117,11

CPU: 194,68

CPU: 750,94

CPU: 178,44

Total: 752,19

Total: 179,93
Total: 127,75

Total: 192,28

Total: 122,56

Total: 219

0 ms

100 ms

200 ms

300 ms

400 ms

500 ms

600 ms

700 ms

800 ms

0 ms

100 ms

200 ms

300 ms

400 ms

500 ms

600 ms

700 ms

800 ms

TX2 ZC Xavier ZC TX2 SC Xavier SC TX2 UM Xavier UM

Kernel CPU Total

Fig. 5: First benchmark results: Execution times on the Jetson
TX2 and Xavier with ZC, SC, and UM.

Board GPU Cachemax throughput
LL L1

Zero Copy Unified Memory Standard Copy
TX2 1.28 GB/s 97.34 GB/s 104.15 GB/s

Xavier 32.29 GB/s 214.64 GB/s 231.14 GB/s

TABLE I: First benchmark results: Maximum throughput of
the GPU cache on the Jetson TX2 and Xavier.

ZC are higher than those of SC or UM. This is due to the
fact that the system disables the GPU cache when adopting
the concurrent accesses of ZC.

With TX2, the performance difference is sensibly higher
(up to 70%) since, differently from Xavier, TX2 disables
also the CPU cache with ZC. The results shown in Table I
(GPU Cachemax throughput

LL L1 ) confirm that the GPU memory
accesses with ZC form an important bottleneck with a GPU
throughput that is up to 77 times lower than the GPU through-
put provided by SC and UM.

With Xavier, which implements I/O coherency and the CPU
cache is always enabled, the difference between the GPU
kernel performance with ZC and SC is “limited” to 3.7 times.
Table I shows that the GPU Cachemax throughput

LL L1 of ZC in
Xavier is still significantly worse than that in SC (or UM), even
though the difference is sensibly reduced when compared to
TX2 (i.e., 7 times lower in Xavier vs. 77 times lower in TX2).

In conclusion, when considering cache-dependent applica-
tions originally implemented with ZC, the ZC to SC switching
can lead to a MaxZC/SC_speedup equal to 70 in the TX2,
while equal to 3.7 in Xavier. Since these values represent up-
perbounds, the micro-benchmark results underline that Xavier
likely gives positive performance by adopting ZC also in many
cache-dependent applications.

Figures 6 and 3 show the results of the second benchmark
on the Jetson TX2 and Xavier, respectively. With TX2 (Fig. 6),
from 1/16,000 to 1/8000 accesses, the GPU cache throughput
between ZC and SC is comparable. This allows us to identify
the GPU cache threshold (2.7%). Over 1/8000, the difference
on throughput as well as on performance sensibly increases.

With Xavier (Fig. 3), we identified three zones (delimited by
the vertical lines in the figure). In the first zone (left-most),
ZC and SC provide the same performance. This allows us
to identify the GPU cache threshold (16.2%) to switch to
ZC. In the second zone (between the two vertical lines) the
performance difference is below 200% (cache usage between
16.2% and 57.1%). In this case, the device may still provide
equal or better performance by switching to ZC. In the third
zone the performance difference sensibly increases over 200%,
which suggests to adopt SC. This underlines that, when com-
pared to SC, ZC can offer identical performance when there is
limited cache usage, with linear performance degradation up
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Fig. 6: Second benchmark results on the NVIDIA Jetson TX2.
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to a hard limit for bandwidth (i.e., 59 GB/s on Xavier). The
closer we move towards the third zone, the higher must be
the time the application gains with concurrent execution and
task overlapping. After 57.1% of GPU cache usage, the GPU
is severely bottlenecked and the recommendation is to not use
ZC.

Fig. 7 shows the results of the third benchmark, which are
used to extrapolate the SC/ZCMax_speedup. The runtime of
the CPU and GPU tasks are comparable and the tasks can be
fully overlapped. Due to the large data set used, 227 floats
(i.e., 512 MB), transfer times contribute significantly to the
system performance. ZC is up to 164% faster than UM and
up to 152% faster than SC.

Board
CPU

Cacheusage
LL L1

(%)

CPU
cache

thresh.
(%)

GPU
Cacheusage

LL L1
(%)

GPU
cache

thresh.
(%)

Kernel
times
(µs)

Copy
time

per
kernel

(µs)

SC/ZC
speedup
(up to,

%)

Nano 19.8 15.6 1.7 2.5 453.5 44.8 −
TX2 19.8 15.6 3.7 2.7 175.2 22.4 −

Xavier 6.1 100 7.0 16.2-57.1 41.2 16.88 69.3

TABLE II: Profiling results of the SH-WFS application.

B. Tuning the Shack–Hartmann adaptive optics application
Adaptive optic algorithms measure and compensate optical

aberrations when capturing images. We applied the proposed
framework to tune an implementation of the adaptive optics
with Shack-Hartmann sensors algorithm for edge computing
[14]. Table II shows the profiling results, which quantify
the dependency of the application performance on the CPU
and GPU caches. In particular, the CPU cache usage of the
application on Nano and TX2 exceed the threshold. This
suggests that the application on these devices likely takes
more advantage from the SC or UM communication models.
With Xavier, the framework suggests to switch to ZC, with an
estimated potential speedup up to 69%.
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Board
SC time

(CPU
only)

SC kernel
time

UM time
(CPU
only)

UM
kernel

time

UM
speedup
(vs SC)

UM
kernel

speedup
(vs SC)

ZC time
(CPU
only)

ZC kernel
time

SC/ZC
speedup
(actual vs

SC)

ZC kernel
speedup
(vs SC)

Nano 1070.1µs
(238.6µs) 453.54µs 1021.5µs

(259.7µs) 454.92µs 5% 0%
1796.1µs

(1120.7µs) 467.21µs −67% −3%

TX2 765.04µs
(79.6µs) 175.18µs 783.67µs

(217.2µs) 177.16µs −2% −1%
801.24µs
(307.4µs) 244.17µs −5% −39%

Xavier 304.57µs
(41.9µs) 41.24µs 305.80µs

(88.8µs) 47.08µs 0% −14%
220.15µs
(45.4µs) 47.14µs 38% −14%

TABLE III: SH-WFS centroid extraction algorithm performance results.

Board
CPU

Cacheusage
LL L1

(%)

CPU
cache

thresh.
(%)

GPU
Cacheusage

LL L1
(%)

GPU
cache

thresh.
(%)

Kernel
times
(µs)

Copy
time

per
kernel

(µs)

SC/ZC
speedup
(up to,

%)

TX2 0 15.6 25.3 2.7 93.56 1.57 −
Xavier 0 100 20.1 16.2-57.1 24.22 1.35 5.9

TABLE IV: Profiling results of the ORB-SLAM application.

Board SC
time

SC
kernel
time

ZC
time

ZC kernel
time

SC/ZC
speedup

(actual)

ZC
kernel

speedup
TX2 70ms 93.56µs 521ms 824.20µs −744% −880%

Xavier 30ms 24.22µs 30ms 26.99µs 0% −10%

TABLE V: ORB-SLAM performance results.

To evaluate the performance model, we implemented the
application with the three communication models. Table III
shows the results. As expected, the difference between SC and
UM is negligible (below ±5%). Switching from SC to ZC on
Nano and TX2 lead to a system performance degradation. A
sensible loss of performance has been measured with Nano
(-67%), which was expected as, in that board, the micro-
benchmarks classified the application CPU cache dependent
while not GPU cache dependent. A loss of performance has
been measured and was expected on TX2, since both the CPU
and GPU cache usage were behind the corresponding thresh-
olds. With Xavier, we observed a performance improvement of
the system equal to 38%. Thanks to ZC and the corresponding
data transfer elimination, we measured, in average, 0.12J
and 0.09J per second energy saving on Xavier and TX2,
respectively, w.r.t. SC. We did not consider the energy saving
on Nano as the performance loss is not negligible.

C. ORB-SLAM application

For the sake of space, we report the comparison between the
ORB-SLAM application considering only SC and ZC. We do
not report the result with the Nano device as it does not allow
satisfying the real time constraints of the (heavy) application.
Table IV shows the profiling results, which classify the appli-
cation as GPU cache-dependant with both TX2 and Xavier.
However, with Xavier, the profiling maps the application in
the second zone of the GPU cache usage (see Section IV-A
and Fig. 3).

Table V shows the application performance we obtained
with the application implemented with both SC and ZC on
TX2 and Xavier. As expected, ZC on TX2 strongly limits the
application performance. On the other hand, Xavier provides
the same performance by considering the application imple-
mented with SC and ZC. In this case, the performance of the
GPU kernel that slightly decreases (−10%) is fully compen-
sated by the absence of data transfers and task overlapping.
With a 30Hz camera as input sensor, we measured, on average,
0.17J per second energy saving on Xavier.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a framework to accurately estimate
the potential speedup a CPU-iGPU application under tuning
may have by switching from one communication model to
another. The experimental analysis conducted on different
real cases of study underlined that the characteristics of both
application and target device strongly affect the choice of the
best communication model, thus motivating the key role of
the micro-benchmarks and of the performance model in the
proposed decision framework.
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