
A Compiler Phase to Optimally Split GPU
Wavefronts for Safety-Critical Systems

Artem Klashtorny
Electrical and Computer Engineering

University of Waterloo
Waterloo, Canada

artem.klashtorny@uwaterloo.ca

Mahesh Tripunitara
Electrical and Computer Engineering

University of Waterloo
Waterloo, Canada

tripunit@uwaterloo.ca

Hiren Patel
Electrical and Computer Engineering

University of Waterloo
Waterloo, Canada

hiren.patel@uwaterloo.ca

Abstract—We present a compiler phase for GPUs enabled
with predictable wavefront splitting (PWSG) that implements
an optimal algorithm to split diverging GPU wavefronts into
separate scheduleable entities. This algorithm selects branches in
the GPU kernel that guarantee the lowest worst-case execution
time (WCET) for the kernel. We implement our algorithm in
a compiler flow for an AMD GPU, and we deploy the resulting
binary on a gem5 micro-architectural implementation of the AMD
GCN3 GPU. We evaluate our implementation on an extensive set
of synthetic benchmarks. Our experiments show that by automat-
ically selecting points in the GPU kernel to split wavefronts, we
are able to reduce the WCET ranging from 34% to 52% reduction
compared to five alternative approaches.

Index Terms—parallel architectures, real-time systems, SIMD
processors, compilers, algorithms

I. INTRODUCTION

There is growing interest in using graphics processing units
(GPUs) for safety-critical systems. This is because GPUs offer
significant performance improvements for massively parallel
workloads. An example of a safety-critical systems application
that can benefit from using GPUs is autonomous driving. GPUs
can be used in autonomous driving systems to run speed limit
recognition, blind spot identification, parking assistance, and
active crash prevention. However, adopting commercial-off-the-
shelf (COTS) GPUs in safety-critical systems is a challenge as
we explain next.

Applications that use GPUs for safety-critical systems typi-
cally undergo a certification process to ensure that the worst-
case execution time (WCET) of the application is never ex-
ceeded. Using active crash prevention as an example, the
brakes must always be applied within a certain amount of
time to avoid crashes. Computing the WCET requires detailed
knowledge of the GPU hardware, the software driver, the
remaining software stack, and its interaction with the hardware.
However, obtaining this information for COTS GPUs, such
as the NVIDIA Jetson SoC and the Tesla Autopilot SoC is
difficult. This is because their implementations are proprietary
and often closed source [1].

In response, a recent research effort proposed a predictable
GPU architecture with wavefront splitting (PWSG) [2] for
safety-critical systems built on top of the AMD GCN3 ar-
chitecture that is open-source [3]. PWSG’s design exploits a
performance optimization technique while lowering the WCET.

PWSG accomplishes this by making the following three con-
tributions. (1) PWSG exploits a form of predictable wavefront
splitting to improve the performance of divergent branches, and
reduce the WCET of the kernel. (2) Two instructions are added
to the instruction-set architecture to allow programmers to ex-
plicitly annotate branches in the kernel to split wavefronts, and
points to merge wavefronts. This allows analysis tools to com-
pute the WCET of the kernel and lower the WCET estimates.
(3) An extended WCET analysis with support for predictable
wavefront splitting. We find PWSG to be an interesting GPU
architecture for safety-critical systems. However, we found it
difficult to exploit wavefront splitting effectively while lowering
the WCET. This is because PWSG requires manual annotation
of branch instructions for wavefront splitting. In our experience,
for complex GPU kernels, determining where to make these
annotations is cumbersome and often results in large WCET
estimates.

In this work, we address this problem by developing a
compiler phase for PWSG to optimally split the GPU ker-
nel’s wavefronts to minimize the WCET. Our compiler phase
implements an optimal algorithm that identifies branches in
the GPU kernel that the wavefront can split on. We extend
PWSG’s compiler flow with this compiler phase to automate
the entire process of annotating and generating the GPU kernel
executable.

Our main contributions to this work are as follows.

1) We design an optimal algorithm that identifies branches
at which to split the wavefronts. This algorithm relies
on identifying a recurrence for the optimal choice of
branches to annotate to split wavefronts on.

2) We implement the algorithm in a compiler phase that
analyzes the control-flow graph and automatically inserts
the necessary annotations. We prove the algorithm’s
correctness and optimality.

3) We integrate our compiler phase with the PWSG compiler
flow and empirically evaluate it on a large set of synthetic
benchmarks. Our results show that our algorithm is
indeed optimal, and we see a reduction in WCET ranging
from 34% to 52% when compared to five alternative
approaches.

© 2024 IEEE.  Personal use of this material is permitted.   Permission from IEEE must be obtained for all other uses,  in any current or future media,  including 
reprinting/republishing this  material for advertising or promotional purposes, creating new collective works,  for resale or redistribution to servers  or lists, or 
reuse of any copyrighted component of this work in other works. 

A. Klashtorny, M. Tripunitara, and H. Patel, “A Compiler Phase to Optimally Split GPU Wavefronts for Safety-critical Systems,” in proceedings of IEEE
Design Automation and Test in Europe (DATE) , Mar. 2024, pp. 1–6.



II. BACKGROUND

We describe the relevant background in understanding a GPU
architecture with predictable wavefront splitting.

void kernel() {1
asm(split);2
if (A[wid] > 0)3
A[wid] += 1;4

else5

A[wid] += 2;6
asm(merge);7

}8
int W = 4;9
launch(kernel, W);10

(a) A simple GPU kernel.

SIMD Unit

V
A

LU

WF Contexts

SA
LU

EM

SRFVRFIBUF

Split Registers

GPU
SIMD SIMD

⋯

⋯ SIMD

SIMD SIMD ⋯ SIMD

SIMD SIMD ⋯ SIMD

⋯ ⋯⋯

(b) PWSG hardware model. Dedicated SIMD units are in red
and splitting registers are in green.

Fig. 1: GPU system model.

Programming Model. GPUs execute multi-threaded programs
known as kernels, where each thread is known as a work-
item. Figure 1a shows a simple kernel where every work-item
increments the data in a vector A at index wid, the work-item
identifier. Work-items execute kernel instructions in parallel on
distinct data elements; this pattern is called single instruction,
multiple data (SIMD) [4]. When launching the kernel, the GPU
programmer specifies the number of work-items that execute
the kernel, as shown with int W in Figure 1a. If the GPU does
not have enough execution resources to execute all work-items
simultaneously, the GPU divides them into groups of work-
items based on the number of ALUs. Such a group is called a
wavefront.

Hardware Model. Figure 1b shows the architecture of PWSG:
a GPU enabled with predictable wavefront splitting [2]. Note
that there are two key differences between a traditional GPU
and PWSG: (1) PWSG reserves execution units and wavefront
contexts for wavefront splitting, and (2) PWSG introduces
merge and split instructions to statically identify points in
the kernel to split wavefronts, as shown in Lines 2 and 7 of
Figure 1a. PWSG consists of NSIMD SIMD vector execution
units as shown on the left-hand side of Figure 1b. Each SIMD
unit contains a vector ALU (VALU) that operates on NALU

data elements in SIMD manner. Hence, one SIMD unit enables
SIMD execution of one wavefront at a time. Each SIMD unit
also contains a set of wavefront contexts. A wavefront context
maintains the state of the wavefront via a vector register file
(VRF), a scalar register file (SRF), and an instruction buffer
(IBUF). A special register known as an execute mask (EM)
specifies whether a work-item is active or dormant. An active
work-item executes the instruction, while a dormant work-
item executes a NOP. If the wavefront executing on the SIMD
unit encounters a stall condition, the PWSG can switch to
a wavefront stored in another wavefront context to improve

performance. PWSG also contains scalar ALUs to execute
instructions that are not vector instructions, such as branch
instructions and synchronization barriers. The right-hand side
of Figure 1b illustrates the detailed architecture of a SIMD unit.

Wavefront Splitting in PWSG. Wavefront splitting is a
performance optimization technique to address branch diver-
gence [5]–[8]. Branch divergence occurs when a GPU executes
a conditional branch instruction, and the outcome of the condi-
tion’s evaluation is different across work-items in a wavefront.
This causes a subset of the work-items in the wavefront to go
down the true path for the condition while the other work-items
go down the false path. Since work-items in a wavefront must
execute in lockstep, GPU serializes the execution of the two
branch paths using the EM. Consider the program illustrated
in Figure 2a using a control-flow graph (CFG). The nodes are
basic blocks (bi) that correspond to sequences of instructions
in the kernel between branch instructions. Nodes b1, b4, and
b6 branch out to two different nodes based on the value of
the work-item index, wid. Figure 2b shows the execution with
branch divergence. At time 2, notice that work-items with index
0 and 1 remain active (solid colored arrows) while 2 and 3
are dormant (empty arrows). This is because the branch in b1
caused work-items 0 and 1 to enter the true path. At time
4, the other work-items execute while 0 and 1 are dormant
since they completed their execution. Such diverging execution
continues for b4 and b6. Branch divergence reduces average-
case performance [9] and incurs serialized execution for the
WCET [2]. PWSG is also a GPU; thus it experiences the same
challenges with branch divergence [2].

PWSG enables wavefront splitting by reserving SIMD units
to guarantee parallel execution of split wavefronts [2]. This
allows PWSG to execute both branching paths for a wavefront
in parallel. In Figure 1b, we show the reserved SIMD unit
resources in red. PWSG promotes a design parameter S that
indicates the number of units into which any wavefront can be
split and executed in parallel. This is done by reserving a subset
of SIMD units specifically to execute the split wavefronts. In
general, PWSG requires S · NSIMD reserved SIMD units in
total based on the design parameter S. For example, when S
is 1, there need to be NSIMD SIMD units reserved. PWSG
also extends the wavefront context with some special registers,
highlighted in green, that keep track of relationships between
split wavefronts for when they need to merge. PWSG requires
GPU programmers to annotate the kernel with split and merge

instructions to select split and merge points. These points
indicate where to split wavefronts and merge them.

III. MOTIVATION: SELECTING SPLIT AND MERGE POINTS

Recall that PWSG reserves S · NSIMD SIMD units for
executing wavefronts that are split. However, PWSG requires
the GPU programmer to manually annotate in the kernel where
to split and merge the wavefront by using split and merge

instructions [2]. We find deciding where to split and merge to
provide the lowest WCET to be a challenge.

Selecting branches to split. We revisit the example shown
in Figure 2a. The table beside the CFG indicates the WCETs

© 2024 IEEE.  Personal use of this material is permitted.   Permission from IEEE must be obtained for all other uses,  in any current or future media,  including 
reprinting/republishing this  material for advertising or promotional purposes, creating new collective works,  for resale or redistribution to servers  or lists, or 
reuse of any copyrighted component of this work in other works. 

A. Klashtorny, M. Tripunitara, and H. Patel, “A Compiler Phase to Optimally Split GPU Wavefronts for Safety-critical Systems,” in proceedings of IEEE
Design Automation and Test in Europe (DATE) , Mar. 2024, pp. 1–6.



𝒆(⋅)𝑩𝑩

11

32

23

14

25

16

37

58

19

110

4

6

5 87

9

1

32

10

i<2 i≥2

i≥1
i<1

i≥3i<3

(a) Kernel CFG and WCETs
for each basic block.

3210

20

0

2

4

6

8

10

12

14

16

18

WI index, i
Time 10

SIMD#

1

2

3
4

6

9
10

5

7

8

(b) Execution timeline
without splitting.

3210

20

0

2

4

6

8

10

12

14

16

18

WI index, i
Time 10

SIMD#

1

2

3
4

10

5 6

9

7

8

(c) Execution timeline when
splitting at b4.

3210

20

0

2

4

6

8

10

12

14

16

18

WI index, i
Time 10

SIMD#

1

2

3
4

6

9
10

5

7
8

(d) Execution timeline when
splitting at b6.

3210

20

0

2

4

6

8

10

12

14

16

18

WI index, i
Time 10

SIMD#

1

2 3

4

6

9
10

5

7
8

(e) Execution timeline when
splitting at b1 and b6.

Fig. 2: Example kernel CFG and the impact of split point choice on WCET.

for each basic block, denoted by e(bi). We assume that e(bi)
is an input to our compiler phase obtained by either static
WCET analysis [10] or measurement-based analysis [11]. Let
us assume that S is 1; thus, PWSG has reserved SIMD units
to split a wavefront once. Further, suppose that work-items at
b4 and b6 diverge. As noted earlier, Figure 2b illustrates the
scenario without any wavefront splitting where the diverging
work-items serialize their execution. Thus, the WCET of the
wavefront executing the kernel is 20 time units. As alternatives,
the execution timelines in Figures 2c and 2d show the impact
of selecting either b4 or b6 to split on, respectively. Splitting
at b4 results in a WCET of 18, and at b6, the WCET is 17.
For this example, annotating the kernel to split wavefronts at
b6 yields the lowest WCET. The main reason the WCET gets
reduced when splitting at a branch is because PWSG guarantees
parallel execution of both paths of the branch. Thus, the WCET
of the branch is the maximum of the two paths. We find that for
larger CFGs with multiple nested branches manually selecting
branches to split the wavefront on is not practical. Therefore,
an automated method to select branches must be developed.

Reusing SIMD units by merging wavefronts. After a wave-
front splits, PWSG allows the wavefronts to merge together [2]
by requiring the GPU programmer to insert merge instructions
in the kernel. This typically happens when two branch paths
complete their execution and arrive at the join point in the
CFG. For example, b9 is the join point for the branch at b6.
Suppose we annotate b9 with merge. Then, PWSG merges the
split wavefront with the original wavefront. The main advantage
of merging wavefronts is that the reserved SIMD unit is vacant,
which allows other wavefronts to reuse the SIMD unit. We
show the benefit of reusing a SIMD unit with the help of
Figure 2e. Suppose that the branch at b1 is marked to split,
and b4 is marked to merge the split wavefronts executing b2
and b3. The same SIMD unit can be reused to split the branch
at b4 or b6. We observe that by selecting branches b1 and b6
to split, and b4 and b9 to merge on, we obtain a WCET of 15.
This is lower than any of the other alternatives.

Challenge: Selecting branches to split on to obtain the
lowest WCET while reusing SIMD units. For a simple
kernel as in Figure 2, manual inspection may give the optimal
assignment of branches to split on. However, in our experience,
making these decisions for larger kernels is difficult. Therefore,
we require an approach to select branches to split on to obtain
the lowest WCET for the kernel while reusing the SIMD units
whenever possible. We address both of these challenges.

IV. COMPILER PHASE

We extend PWSG’s compiler flow with our compiler phase
and illustrate it in Figure 3. Note that blue boxes in this diagram
are new steps that we add, while yellow boxes are inputs and
the grey box is for the existing PWSG implementation. The
tool flow starts by using PWSG’s compiler flow to extract
the WCET of basic blocks, e(bi), which we use to create a
detailed CFG. It then feeds this CFG to our split point solver,
in which our selection algorithm determines the optimal split
points given a value of S. Finally, the tool flow automatically
annotates the kernel at the chosen split points.

PWSG
Annotated
Kernel

Input
Kernel

Split Point
Solver

Source Code
Annota�on

Fig. 3: Compiler phase tool flow.

A. Algorithm

Underlying our algorithm, and a proof for its optimality, is
the recurrence in Equation (1) for the optimum, i.e., lowest,
WCET we are able to achieve. We adopt the following notation.
The basic blocks in the CFG comprise the set B = {b1, . . . , bn}
while D ⊂ B is the set of branch nodes. We represent as
t(bi, u) the optimum WCET for the CFG rooted at bi given u
SIMD units; thus, we seek t(b1,S + 1), where b1 is the root
of the CFG. Note that S +1 is the number of SIMD units that
can execute split wavefronts in parallel, referring to the existing
SIMD unit and the S reserved SIMD units. We abuse notation
slightly and use t(C, u), where C is a set of bi values, to refer

© 2024 IEEE.  Personal use of this material is permitted.   Permission from IEEE must be obtained for all other uses,  in any current or future media,  including 
reprinting/republishing this  material for advertising or promotional purposes, creating new collective works,  for resale or redistribution to servers  or lists, or 
reuse of any copyrighted component of this work in other works. 

A. Klashtorny, M. Tripunitara, and H. Patel, “A Compiler Phase to Optimally Split GPU Wavefronts for Safety-critical Systems,” in proceedings of IEEE
Design Automation and Test in Europe (DATE) , Mar. 2024, pp. 1–6.



1

3

7

11

98

10

2

54

6

11
32

13
14

25
16

37
58

69
110

011

(a) Assignment of SIMD units.

321BB

1217241

5562

1113

1114

2225

1116

99147

5558

6669

11110

00011

(b) The table t[·].
321BB

1

2

7

(c) The table n[·], only showing entries for branch nodes.

Fig. 4: An example kernel and corresponding tables t[·] and
n[·] computed by Algorithm 1 and the consequent assignment
of SIMD units. The cells in green highlight the entries that
pertain to an optimal solution.

to
∑

b∈C t(b, u). We assume a function e : B → R+, which is
the execution time of each bi. And finally, we use li to represent
the set of basic blocks contained in the left (i.e., true) branch
of bi that is not contained in the lk or rk of any other bk, and ri
of the right branch; if bi is not a branch node, then li = ri = ∅.
For example, in Figure 4a, l1 = {2, 6} , r1 = {3, 7, 10}, and
l7 = {8} , r7 = {9}.

t(bi, u) =


e(bi), if bi /∈ D (1a)
e(bi) + t(li ∪ ri, 1), if u = 1 and bi ∈ D (1b)
e(bi) +M, otherwise (1c)

where

M = min
{

max
1≤δ<u

{t(li, δ), t(ri, u− δ)} ,

t(li, u) + t(ri, 1),

t(li, 1) + t(ri, u)
} (2)

Theorem 1 (Optimality): The recurrence for t(bi, u) is cor-
rect, i.e., t(b1,S + 1) yields the minimum WCET for a CFG
rooted at b1, given S reserved SIMD units.

Proof: By structural induction on the CFG. For the base
case, the CFG has one node only, and the recurrence specifies
that t(b1, u) = e(b1) for all u ≥ 1, which is of course correct.
For the step, if u = 1, the entire CFG must be executed using
a single SIMD unit only; this corresponds to the second case
of the recurrence, i.e., e(bi) + t(li∪ri, 1). Otherwise, we either
perform a split by allocating, for some δ that satisfies 1 ≤ δ <
u, δ units to the left branch and u− δ to the right, or not split,
in which case we allocate all of the u SIMD units to one of
the branches. Amongst these options, we choose the one that
minimizes the WCET.

Algorithm 1 Dynamic programming split hardware allocation
1: procedure FILLTABLES(B, u)
2: Allocate table t of size |B| × u
3: Allocate table n of size |B| × u
4: for bi ∈ B \D do
5: for j from 1 to u do
6: t[bi, j]← e(bi)
7: for bi in B in reverse topological order do
8: t[bi, 1]← e(bi) +

∑
k∈li∪ri

t[bk, 1]

9: n[bi, 1]← ⟨(d), 1, 1⟩
10: for j from 2 to u do
11: for bi in B in reverse topological order do
12: m← e(bi) +

∑
k∈li

t[bk, 1] +
∑

k∈ri
t[bk, j]

13: n[bi, j]← ⟨(d), 1, j⟩
14: mr ← e(bi) +

∑
k∈li

t[bk, j] +
∑

k∈ri
t[bk, 1]

15: if mr < m then
16: m← mr

17: n[bi, j]← ⟨(d), j, 1⟩
18: for δ from 1 to j − 1 do
19: pl ←

∑
k∈li

t[bk, δ]

20: pr ←
∑

k∈ri
t[bk, j − δ]

21: if e(bi) + max{pl, pr} < m then
22: t[bi, j]← e(bi) + max{pl, pr}
23: n[bi, j]← ⟨(s), δ, j − δ⟩
24: m← t[bi, j]
25: return

Given the recurrence for t(bi, u), we can write a com-
panion recurrence, shown in Equation (3). This recurrence
specifies what we denote as n(bi, u), which is a triple of
{(s)plit, (d)o not split} × Z+ × Z+. The first component of
n(bi, u) identifies whether or not we split at node bi, given u
SIMD units. The other two components identify the manner in
which we apportion the u SIMD units to the two subtrees of
bi. As the recurrence expresses, the value of n(bi, u) is based
on which of the cases in the recurrence for t(bi, u) applies, i.e.,
minimizes the WCET.

n(bi, u) =


〈
(d), 0, 0

〉
, if bi /∈ D (3a)〈

(d), 1, 1
〉
, if u = 1 and bi ∈ D (3b)

q, otherwise (3c)
where the choice q ∈ Q minimizes the WCET and

Q =
{〈

(s), δ, u− δ
〉
,
〈
(d), u, 1

〉
,
〈
(d), 1, u

〉}
(4)

For example, if n(bi, 5) = ⟨(s), 2, 3⟩, this means that we split
at bi while allocating 2 of the 5 SIMD units to the left branch,
and 3 to the right. As another example, if n(bi, 5) = ⟨(d), 5, 1⟩,
this means that we do not split at bi, and allocate all 5 SIMD
units to the left branch.

Realizing the recurrence for t and/or n top-down, i.e.,
directly as expressed by the recurrences, would yield an
exponential-time algorithm. However, bottom-up, using the
dynamic programming algorithm we show as Algorithm 1 is
polynomial-time. The algorithm is invoked as
FILLTABLES({b1, . . . , bn} ,S + 1).

The algorithm allocates and populates two tables, t[·] and
n[·], each of size |B| × u, where B is its first argument and u

© 2024 IEEE.  Personal use of this material is permitted.   Permission from IEEE must be obtained for all other uses,  in any current or future media,  including 
reprinting/republishing this  material for advertising or promotional purposes, creating new collective works,  for resale or redistribution to servers  or lists, or 
reuse of any copyrighted component of this work in other works. 

A. Klashtorny, M. Tripunitara, and H. Patel, “A Compiler Phase to Optimally Split GPU Wavefronts for Safety-critical Systems,” in proceedings of IEEE
Design Automation and Test in Europe (DATE) , Mar. 2024, pp. 1–6.



its second. Each t[bi, j] corresponds to t(bi, j), and each n[bi, j]
corresponds to n(bi, j). The algorithm realizes exactly the
recurrence for t from above, and the corresponding companion
recurrence for n. The algorithm runs in time O(n · u2). Thus,
its running time is polynomial in the size of the CFG and the
number of SIMD units. As the latter is upper-bounded by n,
the algorithm is polynomial-time.

In Figures 4b and 4c, we show the tables t[·] and n[·] that are
computed by our algorithm for the CFG and corresponding e(·)
values in Figure 4a, given S = 2. The entry to the top right of
the table for t[·] is our optimal WCET, 12 in this example. The
corresponding entry in the n[·] table is ⟨(s), 1, 2⟩. This tells us
that we should indeed split at b1, while allocating 1 SIMD unit
to the left branch, and 2 to the right. Thus, back in the table for
t[·], we need to consult the rows that correspond to the column
for 1 SIMD unit for rows 2 and 6 for the left branch, and the
column for 2 SIMD units for the rows 3, 7, and 10 for the right
branch. As b7 is a branch node, we then consult n[7, 2] to learn
that we should split at that node, while allocating 1 SIMD unit
each to the left and right branches.

A final detail regards the manner in which we determine
which of S + 1 units we actually assign to each bi ∈ B. We
do this with a straightforward algorithm that goes top-down the
CFG while consulting the entries in the n[·] table. We annotate
some of the edges in Figure 4a showing the SIMD units mapped
to the branches. As we have 3 SIMD units as input, we adopt
the set {u1, u2, u3} to represent them. As the table for n[·] says
that we split at node b1 while allocating 1 SIMD unit to the
left and 2 to the right, we correspondingly partition our set as
Figure 4a shows — {u1} to the left and {u2, u3} to the right.
At branch node b7 in the right subtree, our table for n[·] again
says that we split, while allocating 1 SIMD unit each to the
left and right branches, and therefore we partition our set into
two, {u2} and {u3}. After we run this top-down algorithm, if a
node is annotated with a set of SIMD units {u1, . . . , ui}, then
any of u1, . . . , ui SIMD units may be allocated to that node
during execution.

V. EVALUATION

We evaluate our compiler phase on a publicly available
implementation of PWSG [2], [3]. This implementation of
PWSG uses the gem5 simulator to implement an AMD GPU
with the micro-architectural extensions for predictable wave-
front splitting [2]. This implementation allows us to assess the
impact of our compiler phase on the WCET. We refer to all
these approaches to select branches in the kernel to split on as
approaches for selecting split points.

Algorithms. We compare an implementation of our algorithm
shown in Algorithm 1 against five other algorithms. We allocate
a timeout of five minutes for each algorithm to discover
solutions. Our baseline algorithm is no splitting; thus, zero
branches are chosen as split points. The second algorithm uses
brute force to select points in the kernel to split wavefronts.
The third is a naive algorithm that first computes the reduction
in WCET of splitting at each branch in isolation. Then, the
algorithm selects branches that deliver the greatest reduction.

The fourth algorithm randomly selects a set of S branches to
act as split points. The final algorithm is dynamic waveform
splitting (DWS) that splits wavefronts at runtime.

Benchmarks. We use an extensive set of synthetic benchmarks
to evaluate our compiler phase. Synthetic benchmarks play
an important role in exercising a variety of diverse branching
patterns that allow us to compare our approach against other
approaches.

Synthetic benchmarks. Synthetic benchmarks vary the overall
nesting depth of branches in the kernel, the number of instruc-
tions in each path, and the number of branches in sequence. All
three of these factors impact the number of possible branches
to select as split points. Nesting depth refers to the maximum
number of nested conditional statement in a GPU kernel. We
have five nesting depths from two to six. PWSG groups 64
work-items into each wavefront; hence, a nesting depth of six
enables maximum branch divergence for a kernel.

For each nesting depth, we generate five benchmarks, la-
belled a–e in Figures 5 and 6. These refer to the maximum
number of branches for each benchmark that are in sequence
with each other, from two to six. For each branching path,
we randomize the number of instructions executed to create
a variety of distributions of e(bi) values. We also randomize
the number of branches in sequence with each other. These
sequences enable wavefront splitting to leverage reuse of ded-
icated hardware. They allow us to assess the abilities of each
algorithm to optimize the split hardware allocation.

Results. To gather results, we pass each of the synthetic
benchmarks through each of the split point selection algorithms,
assuming a PWSG architecture with S = 2. Larger S values
are possible, and provide more opportunities to split, making
it most beneficial to workloads with deep nesting. Using
this configuration, we compute the analytical WCET for a
wavefront executing the kernel. Figure 5 shows these WCET
values for the synthetic benchmarks, and Figure 6 shows the
runtime of each algorithm.

The WCET results demonstrate the optimality of the dynamic
programming approach to split point selection. It provides an
average 34% WCET reduction compared to the naive approach,
36% compared to DWS, 48% compared to the brute force and
random approaches, and 52% compared to no splitting. The
results also show that the brute force approach can be useful
for small benchmarks with nesting depth no greater than three.
However, the runtime of the algorithm is exponential; for larger
numbers of branches it reaches a timeout condition and does
not find a solution to the problem.

VI. RELATED WORK

There are several recent efforts that build on each other and
propose wavefront splitting as a solution to address branch
divergence [2], [5]–[8]. The first such solution was dynamic
warp subdivision [5], which split wavefronts at runtime and
interleaved their execution. This work was followed up with
simultaneous branch and warp interweaving [7]. In this work,
the authors proposed allowing split wavefronts to execute

© 2024 IEEE.  Personal use of this material is permitted.   Permission from IEEE must be obtained for all other uses,  in any current or future media,  including 
reprinting/republishing this  material for advertising or promotional purposes, creating new collective works,  for resale or redistribution to servers  or lists, or 
reuse of any copyrighted component of this work in other works. 

A. Klashtorny, M. Tripunitara, and H. Patel, “A Compiler Phase to Optimally Split GPU Wavefronts for Safety-critical Systems,” in proceedings of IEEE
Design Automation and Test in Europe (DATE) , Mar. 2024, pp. 1–6.



1

10

100

1000

10000

a b c d e a b c d e a b c d e a b c d e a b c d e

Depth 2 Depth 3 Depth 4 Depth 5 Depth 6

M
ill

io
n

s 
o

f 
C

yc
le

s

No Spli�ng Brute Force Random Naive DWS DP

Fig. 5: Computed WCET for synthetic benchmarks given split points selected by each algorithm.

1.00E-04

1.00E-03
1.00E-02
1.00E-01

1.00E+00
1.00E+01
1.00E+02
1.00E+03

1.00E+04
1.00E+05
1.00E+06

a b c d e a b c d e a b c d e a b c d e a b c d e

Depth 2 Depth 3 Depth 4 Depth 5 Depth 6

R
u

n
�

m
e 

(m
s)

No Spli�ng DWS Random Naive DP Brute Force

Fig. 6: Algorithm runtimes for each synthetic benchmark.

simultaneously in parallel on shared hardware rather than
interleaved. The third solution proposed dual-path execution
model [6], which added hardware structures to support merging
split wavefronts as soon as possible at the join point of the
branch. More recently, subwarp interleaving [8] was proposed,
which included independent scheduling information for each
work-item, allowing for each wavefront to be split more times.
These wavefront splitting works were limited in their benefit
to the WCET, because they were unable to guarantee parallel
execution of split wavefronts and did not provide any static
information of which branches are chosen as split points. Klash-
torny et al. proposed predictable wavefront splitting [2], which
added dedicated SIMD hardware for splitting to guarantee
parallel execution of split wavefronts and enabled the GPU
programmer to statically annotate split and merge points in
the kernel. These changes to the architecture allow for WCET
analysis of a GPU kernel executed using wavefront splitting.

VII. CONCLUSIONS

In this work, we present a compiler phase for the PWSG
GPU architecture that was designed for safety-critical systems.
Our compiler phase optimally selects points in the GPU kernel
to split wavefronts to obtain the lowest WCET. The key impact
of our compiler phase is that it allows a GPU programmer
to exploit wavefront splitting while obtaining low WCET. We
integrate our compiler phase into the PWSG compiler flow

and evaluate it on an extensive set of synthetic benchmarks.
Our experiments reveal that our compiler phase can reduce
the WCET of a kernel by an average of 52% compared to
traditional architectures and 34% compared to the next-best
selection algorithm.

REFERENCES

[1] P. Bannon et al., “Computer and redundancy solution for the full self-
driving computer,” in IEEE Hot Chips Symposium, 2019, pp. 1–22.

[2] A. Klashtorny et al., “Predictable GPU wavefront splitting for safety-
critical systems,” ACM TECS, vol. 22, no. 5s, Sep 2023.

[3] ——, “PWS GPU,” https://github.com/caesr-uwaterloo/pws, 2023.
[4] T. Aamodt et al., General-Purpose Graphics Processor Architecture.

Morgan & Claypool, 2018, ch. 2, pp. 9–20.
[5] J. Meng et al., “Dynamic warp subdivision for integrated branch and

memory divergence tolerance,” in Proceedings of ISCA, 2010, pp. 235–
246.

[6] M. Rhu and M. Erez, “The dual-path execution model for efficient GPU
control flow,” in Proceedings of HPCA, 2013, pp. 591–602.

[7] N. Brunie et al., “Simultaneous branch and warp interweaving for
sustained GPU performance,” in Proceedings of ISCA, 2012, pp. 49–60.

[8] S. Damani et al., “GPU subwarp interleaving,” in IEEE International Sym-
posium on High-Performance Computer Architecture, 2022, pp. 1184–
1197.

[9] W. Fung et al., “Dynamic warp formation and scheduling for efficient
GPU control flow,” in Proceedings of MICRO, 2007, pp. 407–420.

[10] V. Hirvisalo, “On static timing analysis of GPU kernels,” in 14th
International Workshop on Worst-Case Execution Time Analysis, ser.
OpenAccess Series in Informatics (OASIcs), vol. 39, 2014, pp. 43–52.

[11] A. Betts et al., “Estimating the WCET of GPU-accelerated applications
using hybrid analysis,” in Proceedings of ECRTS, 2013, pp. 193–202.

© 2024 IEEE.  Personal use of this material is permitted.   Permission from IEEE must be obtained for all other uses,  in any current or future media,  including 
reprinting/republishing this  material for advertising or promotional purposes, creating new collective works,  for resale or redistribution to servers  or lists, or 
reuse of any copyrighted component of this work in other works. 

A. Klashtorny, M. Tripunitara, and H. Patel, “A Compiler Phase to Optimally Split GPU Wavefronts for Safety-critical Systems,” in proceedings of IEEE
Design Automation and Test in Europe (DATE) , Mar. 2024, pp. 1–6.


