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Abstract—We present SYNTHIA, an open and automated tool
for synthesizing predictable and high-performance snooping bus-
based cache coherence protocols for multi-core processors in
multi-processor system-on-chips (MPSoCs) deployed in real-time
systems. SYNTHIA automates the complex analysis associated
with designing predictable and high-performance cache coherence
protocols, and constructs new states (transient states) and corre-
sponding transitions that achieve predictability and performance.
We use SYNTHIA to construct complete protocol implementations
from simple specifications of common protocols (MSI, MESI, and
MOESI protocols). We validated the correctness, predictability,
and performance guarantees of the generated protocol implemen-
tations from SYNTHIA using manually implemented versions, and
a micro-architectural simulator.

I. INTRODUCTION

Hardware cache coherence protocols for multi-core pro-
cessors in MPSoCs for real-time and safety-critical systems
have recently become an attractive solution for predictably
managing shared data communication between the multiple
cores [1]–[3]. Recent efforts showed that it was possible for
predictable cache coherence to offer up to 4× average-case
performance improvement over traditional alternatives used in
multi-core platforms [1], [2] while also providing worst-case
latency bounds essential for schedulability in real-time systems.

A hardware cache coherence protocol has a set of rules that
ensures memory operations from cores operate on up-to-date
versions of the requested data. The coherence protocol is a
state machine with coherence states, and transitions between
coherence states. Designing cache coherence protocols that
deliver high-performance and that are correct is known to be
challenging [4]. This is because the design process requires
manually analyzing all possible interleavings of memory op-
erations from different cores to the same shared data, and
then constructing protocols that allow for these interleavings
with little to no stalling of the memory operations. Designing
one that also guarantees worst-case latency bounds (often
called predictability) further exacerbates the challenge. This
is because ensuring predictability while considering the many
scenarios of interleaving memory operations across different
cores requires intricate analyses of the hardware architecture
and the protocol [1]. Missing one scenario can compromise
predictability or limit the achievable performance.

The increase in complexity in designing predictable and
high-performance cache coherence protocols comes in the form
of additional states and transitions to the protocol [1], [5]. For
example, the Modified-Shared-Invalid (MSI) protocol with no

additional support for predictability or high-performance has 3
states and 12 transitions. A predictable and high-performance
variant of the same protocol, however, has 15 states and 58
transitions [1]; a 5× increase in protocol size (number of
states and transitions). A protocol designer is more prone to
miss some states and transitions due to this dramatic increase
in protocol complexity to achieve predictability and high-
performance, which in turn compromises on correctness.

To improve productivity and simplify the construction of
correct, predictable, and high-performance cache coherence
protocols, we propose SYNTHIA, a tool that automates the
coherence protocol construction. SYNTHIA takes as input a
simple specification of a protocol that is devoid of states and
transitions to achieve predictability or high-performance. This
allows a protocol designer to focus on how a memory operation
proceeds correctly without worrying about interleaving memory
operations on the same data and carrying out the memory
operation in a predictable manner. SYNTHIA refines this simple
input specification and produces a predictable protocol imple-
mentation that achieves predictability and high-performance.

Our novel contributions in this work are listed next.
• We present an approach to automatically construct pre-

dictable and high-performance snooping bus-based cache
coherence protocols.

• We implement our approach in a tool called SYNTHIA.
SYNTHIA carefully analyzes scenarios that require access
to the shared bus including those that allow simultaneous
interleaving memory operations on the same data. This
analysis results in the construction of new states and tran-
sitions that achieve predictability and high-performance.

• We evaluate SYNTHIA by generating predictable and high-
performance protocol implementations for several com-
mon protocols [5]. On average, the complexity of the
generated protocols have an increase of 4.9× the number
of states and transitions. We thoroughly validate their
correctness and ensure they are efficient. SYNTHIA is
available at https://github.com/caesr-uwaterloo/Synthia.

II. BACKGROUND AND RELATED WORKS

A. Hardware cache coherence

Coherence states. Coherence states encode information about
access permissions (read/write) on the cache line, and the
state of the cache line data contents. There are two types of
coherence states: (1) stable states (s-states) and (2) transient
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Fig. 1: High level overview of SYNTHIA.

states (t-states) [5]. Memory operations on a cache line begin
and end on s-states, and a cache line goes through different t-
states at various stages of a memory operation. Examples of a
core’s memory operations on a cache line include read/write
memory requests and data responses or coherence message
communication due to own requests or in response to other
core’s memory requests. There are three types of t-states, and
each t-state is suffixed with the following: (1) AD, (2) D, and
(3) A. AD t-states denote that a core has issued a memory
request to a cache line, and is waiting for both the request to
be ordered on the snooping bus and the requested cache line
data contents. D t-states denote that a core has observed its
memory request on the snooping bus, and is waiting for the
cache line data contents. A t-states denote that a core has
the cache line data, and is waiting for its memory operation to
be ordered on the snooping bus.
Transitions. A cache line in a core’s private cache transitions
from one state (s-state or t-state) to another state based on
the core’s memory operations on the cache line or on observing
memory operations from other cores to the same cache line.
When a transition is taken, the cache controller executes actions
to ensure data correctness. For example, exchanging coherence
messages between cores and the shared memory [5].
Snooping bus-based protocols. In snooping bus-based pro-
tocols, cores observe memory operations from other cores
by snooping a shared bus. Snooping bus-based protocols are
typically deployed in multi-core platforms with fewer cores
(less than 16 cores), and are representative of those used
in real-time domains [5], [6]. Data communication using a
snooping bus-based cache coherence protocol begins when a
core generates a memory request to a cache line. If the data
for the requested cache line is available in the core’s private
cache, the request is a cache hit. Otherwise, the core’s cache
controller issues a coherence message based on the type of
memory request (read or write). The cache controller then
broadcasts the coherence message on the snooping bus. The
coherence message is ordered on the bus when all cores and
the shared memory observe the broadcasted coherence message.

B. Predictable hardware cache coherence

Predictable hardware cache coherence protocols ensure that
there is a worst-case latency bound on memory accesses across
all cores [1]–[3]. These protocols are deployed on a multi-
core model that uses a shared snooping bus to communicate
coherence messages between cores and the shared memory, and
a shared data bus between cores and the shared memory. The
shared snooping bus is a non-atomic split transaction bus [5].
The shared snooping bus and data bus deploy a predictable
arbitration policy to predictably manage simultaneous accesses
from cores. Examples of predictable arbitration policies include
time division multiplexing (TDM) and round-robin (RR). These
predictable arbitration policies divide access time to the shared

bus into fixed time slots, and allocates these time slots to cores.
A core is granted exclusive access to the bus at the start of its
allocated slot. A core can only access the bus in its allocated
slot; a pending bus access from a core that arrives immediately
after the start of its allocated slot must wait for the start of its
next allocated slot [1]. The memory hierarchy of the multi-core
consists of one level of split private data and instruction write-
back caches, and a shared last level cache memory. The private
caches store a subset of data present in the shared memory. A
core can communicate data in its private cache with other cores
through point-to-point interconnects.

Prior works on designing predictable cache coherence pro-
tocols such as [1], [2] modified existing conventional cache
coherence protocols to satisfy predictability. These works first
exhaustively analyzed different scenarios that can result in
unpredictable scenarios. New t-states and transitions were
constructed to address these unpredictable scenarios while
maintaining data correctness and most of the performance
benefits in the conventional protocols. Depending on the con-
ventional protocol complexity, the analysis and the number of
t-states and transitions to be constructed for predictability can
be high making it an error prone process. SYNTHIA relieves
this complexity burden by automating the analysis.

C. Related works

Oswald et al. [4] recently presented ProtoGen, an automated
tool that constructed high-performance directory-based cache
coherence protocols. While SYNTHIA takes inspiration from
ProtoGen, it differs from it in two ways. First, SYNTHIA gen-
erates snooping bus-based coherence protocols, which have
different designs and construction mechanisms compared to
directory based protocols [5]. This is because of differences
in coherence message communication (broadcast vs unicast)
and ordering mechanisms (bus vs directory) [5]. Second,
SYNTHIA constructs predictable high-performance coherence
protocols whereas ProtoGen constructed coherence protocols
that only optimize performance. As a result, protocols generated
with SYNTHIA can be used in real-time multi-cores.

Alternate protocol synthesis tools such as Transit [7] and
VerC3 [8] relied on program synthesis that use a combination
of designer provided guidance and model checking to complete
partial descriptions of an input protocol specification. A key
feature of these tools was frequent designer intervention to
add information to the input specification for correct protocol
construction [4]. On the other hand, SYNTHIA only requires a
designer to provide a simple input specification, and generates
the corresponding correct, predictable, and high-performance
protocol implementation without further designer intervention.

III. SYNTHIA IMPLEMENTATION

Figure 1 presents an overview of SYNTHIA. SYNTHIA takes
as input a protocol specification written in SYNTHIADSL (Sec-
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tion III-A). The specification consists of s-states and transi-
tions between s-states at the private cache level. Note that
SYNTHIA assumes the input specification is correct, and does
not perform any verification for correctness on the input. The
input is refined by creating new t-states and corresponding
transitions, and results in a predictable and high-performance
protocol implementation. This refinement identifies two main
scenarios to construct t-states: (1) transitions that must wait
for some communication on the shared bus such as broad-
cast coherence messages or data communication with shared
memory (Section III-B), and (2) transitions that change due to
interleaving memory operations on the same cache line (Section
III-C). In these sections, we focus more on the construction of
t-states as there are several subtleties to consider. We explain
the construction of transitions due to t-states using examples.

A. Protocol specification in SYNTHIADSL
The input information about s-states and transitions is

defined in a domain specific language, SYNTHIADSL. There
are two components in the input: (1) coherence state encoding
of s-states and (2) transitions between s-states. Figure 2
shows the MSI protocol specification in SYNTHIADSL.
Coherence state encoding. Each s-state of a cache line
specified in the input is a 3-tuple of the form (ap, ds, da) where
ap is the access permission, ds is the data state of the cache
line, and da is the data authority of the cache line. The access
permission conveys the type of memory operation (read/write)
permitted on the cache line by a core. A core that does not have
a cache line in its private cache has invalid access permissions.
The data state of a cache line conveys whether a core has
modified the data contents of the cache line. A dirty data state
means that a core may have modified the data contents, and
clean data state means that the core has not modified the data
contents. The data authority of a cache line conveys whether a
core can communicate the cache line data contents to another
core that requests for the same cache line via the point-to-point
data interconnects. An active data authority means that a core
can send the cache line data contents in its private cache to
the requesting core and passive data authority means the core
does not respond with data to another core’s request. Lines 1-3
show the coherence state encoding for the M, S, and I states.

A key benefit of this state encoding is that protocols
with states different from those found in the common MSI,
MESI, and MOESI protocols can also be modeled in SYN-
THIADSL. For example, there is no state with encoding
(read, active, clean) in the common protocols. A core that
has a cache line in such a state can respond with unmodified
data to other cores’ memory requests to the same cache
line. Hence, SYNTHIA can construct protocols from different
protocol specifications including the common ones.
Transitions. (src,ev)→dst is a transition where src is
the source s-state, dst is the destination s-state, and ev
is the event that triggers the transition. OwnRead and Own-
Write events denote a core’s own read and write requests issued
to a cache line, and OtherRead and OtherWrite events denote
other cores’ read and write requests to a cache line ordered
on the bus. Replacement denotes a cache line replacement.

1 M : (write, dirty, active) 10 (S, OtherRead)   -> S
2 S : (read, clean, passive) 11 (S, OwnWrite)    -> M

3 I : (invalid, clean, passive) 12 (S, OtherWrite)  -> I
4 (I, OwnRead)     -> S 13 (M, OwnRead)     -> M
5 (I, OtherRead)   -> I 14 (M, OtherRead)   -> S
6 (I, OwnWrite)    -> M 15 (M, OwnWrite)    -> M
7 (I, OtherWrite)  -> I 16 (M, OtherWrite)  -> I

8 (S, Replacement) -> I 17 (M, Replacement) -> I
9 (S, OwnRead)     -> S

Fig. 2: MSI protocol specification in SYNTHIADSL.
Lines 4-17 define the state transitions in the MSI protocol. For
example, consider (I,OwnRead)→ S. This means that a core
performs a read operation on a cache line that it does not have
in its private cache (I). On receiving the requested cache line
data, the core transitions the cache line to S state. We use
OwnWR (OtherWR) to denote a transition triggered on either
OwnRead or OwnWrite (OtherRead or OtherWrite).

Note that the input in SYNTHIADSL specification does not
require transitions that are triggered when an own memory
operation is ordered on the bus, and when the core receives
the requested data. Furthermore, there are no actions that a
core’s cache controller should execute as a consequence of
the transition. Examples of actions include sending data to
another core (SD), and write-back data to shared memory
(WD). During protocol construction, SYNTHIA automatically
adds such transitions triggered when the memory operation is
ordered (Ordered) and on receiving the requested data (RD),
and the appropriate actions based on the data state and data
authority of the states involved in the transition.

B. t-states for communication on the shared bus

Key idea. Recall that the shared bus for predictable cache
coherence protocols uses a predictable arbitration policy that
allocates each core a fixed time slot to exclusively access the
bus [1]. This means that a core must wait for its allocated time
slot to communicate on the shared bus. These protocols use
t-states to denote that a core has pending shared bus commu-
nication and is waiting for its allocated time slot [1]. Hence,
SYNTHIA analyzes each transition in the input specification,
and identifies whether a transition must communicate coherence
messages or data or both on the shared bus.
Mechanism. Algorithm 1 shows our implementation that dis-
covers when t-states need to be added. The input to Algorithm
1 is a transition t. The procedures SOURCE and DESTINATION
return the source and destination s-states of t. This algorithm
exploits two key insights. First, for transitions triggered on
own memory operations (line 3), t-states are required only
when (a) src has invalid access permissions and src 6= dst
(lines 6-7) or (b) src has clean data state and the operation
is OwnWrite (lines 8-9). Second, for transitions triggered on
other memory operations, t-states are required depending on
the overall state of the cache line before and after the memory
operation across all cores (lines 10-16). Using Figure 3 as an
illustrative example, we explain this implementation.
Consider insight (1). If src has invalid access permissions
(ISINVALIDAP returns true), then src does not have the cache
line data contents to complete the own memory operation (lines
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Algorithm 1 t-states for shared bus communication
1: procedure ISTSNEEDEDBUSCOMM(t)
2: src = t.SOURCE(), dst = t.DESTINATION(), ev = t.EVENT()
3: if ISOWN(ev) then
4: if src == dst then
5: return false
6: else if ISINVALIDAP(src) then
7: return true
8: else if ISCLEANDS(src) ∧ ev == OwnWrite then
9: return true

10: else if ISDIRTYDS(src) ∨ ISACTIVEDA(src) then
11: tList = OWNTRANSITIONS(ev)
12: for all ot ∈ tList do
13: if ISCUMULATIVECHANGE(ot, t) 6= 0 then
14: return true
15: return false

6-7). Hence, such transitions require t-states that wait for both
the broadcast of coherence message regarding the memory
operation to be ordered on the bus and the requested data
contents. In Figure 3, (I,OwnRead)→ S has t-states IS_AD
and IS_D where IS_AD waits for the coherence message
broadcast to be ordered and IS_D waits for the requested data.

The single-writer-multiple-reader (SWMR) is a key invariant
that coherence protocols must satisfy for data correctness [5].
This invariant mandates that at any instance of time either
multiple cores have read-only copies of the same cache line
(clean data state) in their private caches or only one core has a
write-only copy of the cache line (dirty data state) in its private
cache. Hence, for (src,OwnWrite) → dst where src has
clean data state (lines 8-9), the core must at least broadcast a
coherence message so that other cores can invalidate their cache
line copies to satisfy the SWMR invariant. As a result, at least
one t-state is required that waits for the coherence message
broadcast to be ordered on the shared bus. In Figure 3, SM_A
is a t-state that waits for the broadcast of OwnWrite.

Consider insight (2). Unlike the previous case, determining
whether (src,Other) → dst requires t-states by solely
looking at the properties of src and dst can introduce
unnecessary t-states. Unnecessary t-states introduces unnec-
essary bus communication, which in turn causes unnecessary
delays to the memory operation. As an example, consider the
transitions (M,OtherRead) → S and (M,OtherWrite) → I.
Although both I and S have same data authority and data
state, (M,OtherWrite)→ I does not require t-states whereas
(M,OtherRead) → S requires at least one t-state. This is
because (M,OtherRead) → S performs a write-back of the
updated data contents, which must wait for the allocated time
slot to communicate data to the shared bus. Hence, at least one
t-state is required to indicate the pending write-back operation.

We find that taking into account the cumulative coherence
states of a cache line across all cores can identify whether
(src,Other) → dst must access the shared bus, and hence,
requires t-states. For example, consider a two-core system c0
and c1 where c0 has cache line X in M state and c1 does not have
X (I state). Consider that c1 issues an OwnWrite. c0 moves
to I and c1 moves to M after c1’s OwnWrite based on the
transitions described in Figure 2. Notice that only one core has
X in M state before and after c1’s memory operation. Hence, the
cumulative data state and data authority of X across all cores

OwnWR

OwnRead

OwnWrite
OtherWR

Ordered, WD,SD
OwnWriteRD

RD

Ordered

Ordered OtherRead

IS_DIS_AD

IM_AD IM_D
I

M
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OwnRead

OtherWrite, SD

OtherWrite

MS_A
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SM_A

Fig. 3: MSI protocol refinement for communication on the shared bus.

remains the same before and after c1’s memory operation. As
a result, there is no need for c0 to communicate the updated
data contents of X to the shared memory, and inform the
shared memory about the change in its data authority of X.
Alternatively, consider that c1 issues an OwnRead. c0 and
c1 transition to S after c1’s OwnRead. In this scenario, the
cumulative data state and data authority of X across all cores
changes after c1’s OwnRead. Before the memory operation, c0
has X with dirty data state and active data authority, and after
the memory operation, c0 and c1 have X with clean data state
and passive data authority. In this case, c0 must communicate
the change in data authority (from active to passive) and data
state (dirty to clean) in X to maintain data correctness. In the
MSI protocol, the communication of both data state and data
authority changes are realized by c0 doing a write-back. As a
result, this scenario requires t-states.

In Algorithm 1, SYNTHIA only considers transitions trig-
gered on other memory operations where src has either dirty
data state or active data authority. OWNTRANSITIONS(ev)
returns a list of transitions triggered on own memory oper-
ation based on ev. For example, if ev is OtherWrite, then
OWNTRANSITIONS(ev) returns valid transitions triggered on
OwnWrite. For each returned transition from line 11, SYN-
THIA computes the change in cumulative data state and cu-
mulative data authority between destination and source states
in t and ot. ISCUMULATIVECHANGE first computes a value
based on the data state and data authority of the destination
states in ot and t and a value based on the source states in ot
and t, and then returns the difference between the computed
values. A non-zero difference means that a core must respond
with some operation that requires shared bus access, and hence,
requires at least one t-state; otherwise no t-states are required.
In Figure 3, consider (M,OtherRead) → S. Line 11 returns
ot =(I,OwnRead) → S. The source states in ot and t are M
and I and the destination states in ot and t are both S. Line 13
returns true as the cumulative changes in data authority and
data state are not zero, which results in constructing MS_A.

C. t-states for interleaving memory operations

Key idea. In the protocol so far, there is no information
regarding what a core must do when it has a pending operation
on a cache line and observes interleaving memory operations
from other cores on the same cache line. For example, consider
a core that has a cache line in IM_D that is waiting to receive
the requested data to complete its pending OwnWrite. Notice
that there are no transitions in Figure 3 that determine what this
core should do on observing OtherWrite or OtherRead on
the same cache line. This scenario can occur as it may take
several cycles for the core to receive the requested data during
which multiple cores can perform operations on the same cache

© 2021 IEEE.  Personal use of this material is permitted.   Permission from IEEE must be obtained for all other uses,  in any current or future media,  including 
reprinting/republishing this  material for advertising or promotional purposes, creating new collective works,  for resale or redistribution to servers  or lists, or 
reuse of any copyrighted component of this work in other works. DOI: 10.23919/DATE51398.2021.9474238

A. M. Kaushik and H. Patel, “Automated Synthesis of Predictable and High-Performance Cache Coherence Protocols,” in proceedings of IEEE Design
Automation and Test in Europe (DATE), Mar. 2021, pp. 1–6. doi: 10.23919/DATE51398.2021.9474238.



Algorithm 2 t-states for interleaving memory operations
1: procedure ISTSNEEDEDINTERLEAVINGMEMOPS(t, ts)
2: src = t.SOURCE(), dst = t.DESTINATION(), ev = t.EVENT()
3: for all oev ∈ {OtherRead,OtherWrite} do
4: if ISPREORDERED(ts) then
5: newDst = GETDST(src, oev)
6: if newDst 6= dst then
7: if ISOTHER(ev) then
8: return ISTSNEEDEDBUSCOMM(t)

9: return true
10: if ISPOSTORDERED(ts) then
11: newDst = GETDST(dst, oev)
12: if newDst 6= dst then
13: return true
14: return false

line. One solution is to stall any state changes to a cache line
in a t-state until it transitions to its destination s-state. This
solution trades simple protocol design for reduced performance
as it introduces stalls. On the other hand, minimizing stalling
while still maintaining predictability requires careful analysis of
state changes due to interleaving other memory operations on
a cache line in a t-state. In this step, we perform such analysis
to construct t-states and transitions that capture the correct
order of state changes due to interleaving memory operations.
SYNTHIA relies on Algorithm 1 to achieve this minimal stalling
while still maintaining predictability.
Mechanism. For this analysis, we first classify t-states into
two categories based on the relative ordering of other memory
operations observed by a cache line on the shared bus: pre-
ordered and post-ordered t-states. Algorithm 2 constructs t-
states based on this classification. The algorithm takes as input
a t-state (ts) and the transition on which this t-state lies on
(t). For both categories, t-states are not required if there is no
state change due to interleaving other memory operations.
Pre-ordered transient states. A cache line is in a pre-ordered
t-state if the core’s pending memory operation is not yet
ordered on the snooping bus. For example, AD and A states
are pre-ordered t-states as they wait for the core’s memory
operation to be ordered on the snooping bus. A cache line in
a pre-ordered t-state observes interleaving memory operations
from other cores on the bus (if any) before it sees its own
memory operation ordered on the bus. As a result, a cache
line in a pre-ordered t-state reacts to other memory operations
(if any) in the same way as if the cache line is in the source
state. For example, IM_AD, which lies on (I,OwnWrite)→ M,
reacts to other memory operations in the same way as I.

Lines 4-9 in Algorithm 2 describe the conditions for con-
structing new t-states and transitions for a pre-ordered t-state.
In line 5, SYNTHIA applies the other memory operation oev
on the source s-state of the transition, and extracts the new
destination s-state (newDst). A new t-state may be required
to capture any state change (newDst 6= dst) depending on
the transition type of t. If t is triggered on an own memory
operation, then t-states are required in order to capture the state
change, and appropriate transitions to ensure the own memory
operation ultimately completes. For example, consider the pre-
ordered t-state SM_A, which reacts to other memory operations
in the same way as S. On an OtherWrite, a cache line in S
invalidates its data contents and moves to I state. Hence, a

OtherReadOtherWR
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RDRD, SD OtherWrite
OtherRead

OtherWR
I
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IM_DS_D
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RD, SD
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Fig. 4: MSI protocol refinement for interleaving memory operations.

cache line in SM_A must transition to a t-state that conveys
that the cache line data contents are invalid and an Own-
Write operation is pending. For transitions triggered on other
memory operations, SYNTHIA uses the result of Algorithm 1 to
construct necessary t-states (lines 7-8). For example, consider
MS_A, which lies on (M,OtherRead)→ S. An OtherWrite on
M transitions to nextDst =I. While a new t-state can be
constructed, applying Algorithm 1 shows that this is not
required; ISTSNEEDEDBUSCOMM on (M,OtherWrite) → I
returns false as described in Section III-B.
Post-ordered transient states. A cache line is in a post-
ordered t-state after the core’s pending memory operation is
ordered on the snooping bus. Hence, other memory operations
(if any) are ordered after the core’s pending memory operation.
A cache line in a post-ordered t-state reacts to other memory
operations on the cache line in the same way as if the cache
line is in the destination state. D states are post-ordered t-
states. For example, IM_D on (I,OwnWrite) → M reacts to
other memory operations in the same way as M.

Lines 10-13 in Algorithm 2 describe the conditions for post-
ordered t-states. In contrast to pre-ordered t-states, SYN-
THIA applies other memory operations on the destination s-
state (line 11). Consider IM_D. An OtherRead on M transi-
tions to S. Hence, SYNTHIA constructs a new t-state IM_DS_D
as shown in Figure 4. A core that has a cache line in IM_DS_D
completes the pending OwnWrite on receiving the requested
data, and finally transitions to S.

SYNTHIA uses Algorithm 1 to decide whether a post-ordered
t-state transitions to the destination s-state directly or through
other t-states. For example, consider a core that has a cache
line in IM_DS_D. On receiving data, the core must complete
the pending write operation, write-back the updated data con-
tents, send the data to the requesting core, and transition to
the final destination s-state S. Since, there is an operation
that requires shared bus access (write-back), IM_DS_D can-
not directly transition to S, and must first transition to a t-
state (MS_A) to indicate pending write-back as shown in Figure
4. In this case, IM_DS_D lies on M and S, and Algorithm 1
returns true for (M,OtherRead)→ S (details in Section III-B).

D. Replacements and shared memory protocol

Replacements to cache lines with dirty data state or active
data authority must write-back data to the shared memory or
inform the shared memory regarding change in data authority
respectively. Hence, such cache line replacements require t-
states; otherwise, no t-states are required. The shared memory
protocol consists of two s-states to denote the cache line data
state, and a t-state that waits for a core to write-back data.
Additional memory states are dependent on the input s-states.
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TABLE I: Evaluation of SYNTHIA on different protocols. SYNTHIA took less than a few seconds to construct the protocols.
Protocol Input SYNTHIA output Validation Stalling transitions based on Algorithm 2

States Transitions States Transitions Correctness Exhaustive testing Disabled Only pre-ordered Only post-ordered
MSI 3 14 17 66 3 3 12 of 36 4 of 39 8 of 48

MSI-P 3 14 17 64 3 3 14 of 39 4 of 39 10 of 51
MESI 4 19 26 96 3 3 18 of 51 6 of 57 12 of 72

MESI-P 4 19 26 95 3 3 22 of 57 6 of 57 16 of 78
MOESI 5 24 27 103 3 3 18 of 57 6 of 60 12 of 78

IV. RESULTS

Evaluation of SYNTHIA. SYNTHIA successfully constructs
non-stalling and predictable coherence protocols from s-
states specifications of MSI, MESI, and MOESI protocols
[5]. Table I shows the number of states and transitions in the
input and output. All the states in MSI-P and MESI-P protocols
have passive data authority. As a result, all data communication
between cores in these protocols are through the shared mem-
ory. The predictable and high-performance protocol of MSI-P
is the PMSI protocol [1]. A key takeaway is the significant
increase in the number of states and transitions in order to
achieve predictability and high-performance. For example, a
predictable and high-performance MOESI implementation has
more than 5× the number of states and transitions compared
to the input specification. Hence, SYNTHIA relieves the design
burden on a protocol designer by automating the analysis and
protocol construction. We validated the protocols generated by
SYNTHIA against manually implemented verified versions of
the protocols [1]. We found that the states and transitions in
the protocols generated by SYNTHIA matched the manually
implemented versions. We also checked their correctness, pre-
dictability, and performance through exhaustive testing using
the gem5 simulator [9].

We perform the following experiment to highlight how
SYNTHIA improves the productivity of protocol designers.
Suppose a protocol designer manually designed the protocols
listed in Table I, and missed certain analyses that account
for interleaving other memory operations to the same shared
data (Algorithm 2). The missing analyses result in stalled
transitions in the output protocol, which limit the performance
of the cache coherence protocol. Consider a case where a
protocol designer does not perform any of the analyses outlined
in Algorithm 2. For the MSI protocol, we observed that 12
transitions out of total 36 transitions are stalling transitions,
which constitutes more than 30% of the transitions (highlighted
in Table I). Across all protocols, we observed more than 30%
of the transitions in the output protocols are stalling transitions.
If a designer accounts for only one type of t-states (post-
ordered or pre-ordered), then 9%-16% of the transitions in the
constructed protocols are stalling transitions. On the other hand,
protocols generated by SYNTHIA have no stalling transitions
due to interleaving memory operations from other cores.
Predictability and performance evaluation. We manually
converted the states, transitions, and actions in the generated
protocols into the SLICC syntax, and evaluated them using the
gem5 micro-architectural simulator [9]. We used the synthetic
workloads from [1] and verified the data correctness of the
protocols. We modeled a 8-core multi-core platform where the
shared bus deploys a TDM arbitration. Each core is allocated

TABLE II: Predictability and performance evaluation.
Protocol Predictability (WCL in cycles) Performance

Observed WCL Analytical WCL Speedup
MSI 3061 6450 3.44×

MESI 3214 6450 3.38×
MOESI 2019 6450 3.94×
MSI-P 6364 7250 1.72×

MESI-P 5964 7250 1.69×

one TDM slot. Table II shows the maximum observed worst-
case latency (WCL) experienced by a memory request under
the predictable cache coherence protocols, and the average-
performance speedup of the protocols compared to a cache
bypassing technique. The cache bypassing technique disables
private caching of shared data. From Table II, the observed
WCL across all protocols are within their derived analytical
WCL bound, and the generated cache coherence protocols
outperform (as high as 3.94×) the cache bypassing technique
while achieving predictability.

V. CONCLUSION

We present SYNTHIA, an automated tool for constructing
correct, predictable and high-performance cache coherence
protocols. SYNTHIA automates the analyses that identifies sce-
narios involving interleaving memory operations from multiple
cores to shared data and that require access to the shared
bus. SYNTHIA refines the input protocol using the analysis by
adding new states and transitions that achieve predictability and
high-performance. We validated the correctness, predictability,
and performance of the protocols generated by SYNTHIA,
and confirmed that the states and transitions in the generated
protocols matched manually implemented versions.
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