© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

A. M. Kaushik, G. Pekhimenko, and H. Patel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
Optimization (TACO), pp. 1-25, Nov. 2020.

Gretch: A Hardware Prefetcher for Graph Analytics

ANIRUDH MOHAN KAUSHIK, University of Waterloo, Canada
GENNADY PEKHIMENKO, University of Toronto, Canada
HIREN PATEL, University of Waterloo, Canada

Data-dependent memory accesses (DDAs) pose an important challenge for high-performance graph analytics
(GA). This is because such memory accesses do not exhibit enough temporal and spatial locality resulting
in low cache performance. Prior efforts that focused on improving the performance of DDAs for GA are
not applicable across various GA frameworks. This is because (1) they only focus on one particular graph
representation, and (2) they require workload changes to communicate specific information to the hardware
for their effective operation.

In this work, we propose a hardware-only solution to improving the performance of DDAs for GA across
multiple GA frameworks. We present a hardware prefetcher for GA called Gretch, that addresses the above
limitations. An important observation we make is that identifying certain DDAs without hardware-software
communication is sensitive to the instruction scheduling. A key contribution of this work is a hardware
mechanism that activates Gretch to identify DDAs when using either in-order or out-of-order instruction
scheduling. Our evaluation shows that Gretch provides an average speedup of 38% over no prefetching, 25%
over conventional stride prefetcher, and outperforms prior DDAs prefetchers by 22% with only 1% increase
in power consumption when executed on different GA workloads and frameworks.

CCS Concepts: « Computer systems organization — Architectures; « General and reference — Per-
formance;

Additional Key Words and Phrases: Hardware prefetching, graph analytics, data-dependent memory accesses

ACM Reference format:

Anirudh Mohan kaushik, Gennady Pekhimenko, and Hiren Patel. 2021. Gretch: A Hardware Prefetcher for
Graph Analytics. ACM Trans. Archit. Code Optim. 18, 2, Article 18 (February 2021), 25 pages.
https://doi.org/10.1145/3439803

1 INTRODUCTION

Graph analytics (GA) is an important and emerging domain for machine learning applications [51],
image recognition [60], recommendation systems [23, 43], social networks [27, 38], and security
threat analysis [48, 65]. The importance of GA has resulted in several works that profile GA on
modern computing platforms to better understand the performance bottlenecks of GA [14, 26, 39,
45, 55]. These works make two key observations. First, GA only spends a marginal amount of time

New article, not an extension of a conference paper.

Authors’ addresses: A. M. Kaushik, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L
3G1; email: anirudh.m kaushik@uwaterloo.ca; G. Pekhimenko, University of Toronto, 27 King’s College Circle, Toronto,
Ontario, Canada M5S 1A1; email: pekhimenko@cs.toronto.edu; H. Patel, University of Waterloo, Waterloo, Canada; email:
hiren.patel@uwaterloo.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2021/02-ART18

https://doi.org/10.1145/3439803

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

https://doi.org/10.1145/3439803
mailto:permissions@acm.org
https://doi.org/10.1145/3439803

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

g. M. KaUShikerC%EKhim‘inlé% a'l\lnd Héonagel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , pp. 1-25, Nov. . .
P 1§5°0) pe A. M. Kaushik et al.

on computing, while spending most of the time on data movement through the memory hierarchy.
Second, data movement in GA renders levels of the conventional cache hierarchy that are closer
to the cores (L1, L2) ineffective toward improving their performance [14, 55]. This is because the
data movement in GA largely comprise of data-dependent accesses (DDAs) that exhibit insufficient
spatial and temporal locality for the cache levels closer to the cores to exploit. DDAs are pairs of
memory instructions where the data accessed by the first instruction (referred as producer) is used
to compute the memory address accessed by a following instruction (referred as consumer). As a
result, these cache levels register low cache hit rates for GA workloads, which in turn limits GA
workload performance.

Recent GA-specific micro-architectural techniques mainly focused on improving the perfor-
mance of DDAs [4, 12, 53, 67]. Although these prior techniques delivered performance speedups
for different graph algorithms, their applicability across different GA frameworks is limited for the
following reasons.

First, prior works only focused on a single type of graph representation-the compressed sparse
row (CSR) representation. CSR uses a combination of multiple array data structures. However,
different GA frameworks use different graph representations. For example, graph databases [1,
55] use a combination of arrays and pointers, which is different from CSR. Pointers are key for
supporting dynamic graphs by enabling graph modifications in the form of additions/deletions of
nodes and edges [1, 55]. As a result, different graph representations exhibit different DDAs. There-
fore, prior efforts optimizing solely for one type of DDAs cannot improve performance of other
types of DDAs. As a result, prior works have limited applicability across different GA frameworks.

Second, all prior works that focus on improving GA performance through micro-architectural
techniques require some hardware-software interaction from the GA framework to guide their oper-
ation [4, 12, 53, 67]. Specifically, the software enables the hardware accelerator when it encoun-
ters DDAs. This requires workload changes to communicate the beginning of regions that access
DDAs to the accelerators. Consequently, to use these prior works for other GA frameworks, one
would need to identify the correct locations to insert the necessary hardware-software interac-
tions, which requires a detailed understanding of the GA framework implementations. This is an
additional impediment in applying prior works to other GA frameworks.

It is important to note that devising a method that detects DDAs in hardware without such
hardware-software interaction poses a critical challenge. Notably, the method to detect certain
DDAs must change based on the core’s instruction scheduling capability. For instance, in-order
instruction scheduling simplifies the identification of DDAs, but, that same approach is not appli-
cable to out-of-order instruction scheduling. To the best of our knowledge, there does not exist
an approach to effectively identify DDAs from GA workloads when the cores use out-of-order in-
struction scheduling. Most prior works on improving DDAs sidestepped this challenge either due
to the hardware-software interaction supported by their specific GA framework [4, 12, 53, 67] or
by optimizing primarily for in-order cores [66].

In this work, we design a hardware DDA prefetcher for GA, Gretch, that directly addresses
the two aforementioned limitations. As a result, Gretch (1) is applicable across different graph
representations and identifies different DDAs; and, (2) it does not require any interaction from
the GA framework to identify these access patterns. Gretch uses a novel approach to address the
challenge posed by out-of-order instruction scheduling. This is accomplished by exploiting the
interaction between memory accesses in GA workloads and the behaviour of the conventional
stride prefetcher [21]. Hence, Gretch implements a purely hardware approach to detect DDAs
for GA frameworks that works for both in-order and out-of-order instruction scheduling. Gretch
is positioned next to the level 1 data cache (L1-D), and prefetches data from the lower memory
hierarchy levels (L2 and memory) into the L1-D cache.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

g. M. I_(au_shikll_g. Pekhimenl;os, and HéoPateI, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , PR- 1725, Nov.) .
P Yotk "R HArdWaf&Prefetcher for Graph Analytics 18:3

Sfructure datg) Property data

3"1_,235 f012345
(5) {2—[I[5]] | ; i
i 3—[0[1]4] ! L /
L 4—[3 : -
i 5—[0]1]2] Property access logic Property access logic

e I 777777777777777 ! For ngh € Neighbors(Vertex v):‘i

! For ngh € Neighbors(Vertex v):‘i
: \ nghProp = ngh = property

: nghProp = Property[ngh]

(a) Example graph (b) Array-indirect property access (c) Pointer-based property access

Fig. 1. Graph representations.

We summarize our main contributions as follows.

(1) We describe the challenge in identifying certain DDAs in the presence of out-of-order
instruction scheduling. We describe one technique that addresses this challenge by us-
ing the interaction between the GA’s memory access patterns and conventional stride
prefetcher [21].

(2) We propose a new hardware L1-D cache prefetcher for GA called Gretch. Gretch uses a
unified set of hardware structures to implement an approach to identify different DDA si-
multaneously. This approach leverages the identification technique from contribution (1)
without needing any interaction from the GA frameworks.

(3) We evaluate Gretch across GA frameworks Ligra [64] and GraphBig [55], and the mainstay
GA benchmark Graph-500 [54]. We also compare against stride prefetching, and various
DDA prefetchers. Our evaluation shows that Gretch delivers an average 25% (up to 89%)
performance improvement over stride prefetching, and 20% (up to 89%) over the next best
DDA prefetcher.

2 BACKGROUND
2.1 GA Frameworks

GA frameworks are software frameworks that allow implementing different graph algorithms (GA
workloads). GA frameworks must provide features to meet the demands imposed by their use in a
variety of domains. This has resulted in a variety of GA frameworks. Some examples include graph
databases [1, 25, 55], shared-memory graph processing frameworks [37, 64], and graph benchmark
frameworks [2, 15, 54]. We evaluate our proposed hardware prefetcher using three different GA
frameworks taken from different domains: (1) GraphBIG [55], which is inspired by IBM SystemG’s
graph database [19]; (2) Ligra [64], a highly optimized shared-memory graph processing frame-
work; and (3) Graph-500 [54], a high-performance graph benchmark for ranking supercomputers.
Table 1 describes the GA workloads executed on these GA frameworks.

2.2 Data-dependent Memory Accesses in GA

GA frameworks typically have graph representations with graph structure data (nodes and edges),
and node/edge property data. Structure data stores information about nodes and edges. Property
data, however, embeds semantic information relevant to nodes and edges that is relevant to the
application domain. GA workloads use structure data to explore the graph, and compute using
property data.

Figure 1 (a) shows an example of an undirected graph with its structure data being the connec-
tions, and property being the node color. A GA workload explores a graph by traversing a node’s
edges. Most graph representations use arrays to store the node’s edges to benefit from spatial lo-
cality. The data in the node’s edges encode information about the neighbor node. This is used to

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

é. M. I_(aushikll_GCFc’)ekhim(inI;% a'l\lnd Héonagel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , pp. 1-25, Nov. . .
P 1§4°0) pe A. M. Kaushik et al.

Off-chip memory
accesses

Ligra GraphBig
m Array-indirect §Pointer-based

Fig. 2. Contribution of data-dependent accesses to off-chip main-memory accesses.

extract the property of the neighbor node. Hence, extracting neighbors’ properties in GA work-
loads exhibit DDAs. Consider the neighbor node identifier as an unsigned integer. This neighbor
node identifier is used as an index into an array of node properties as shown in Figure 1(b) re-
sulting in an array-indirect DDA. Another example is a pointer to an encapsulated data structure
that stores the neighbor node’s connections and property as shown in Figure 1(c). Accessing the
property of the neighbor node requires dereferencing the pointer to the structure, and accessing
the property field resulting in a pointer-based DDA.

3 MOTIVATION

Prior works have focused on addressing these DDAs from GA to improve GA performance [4, 12,
53, 67]. In the following subsections, we list two observations regarding DDAs that have received
less attention from these prior works. These observations limit the applicability and performance
benefits of prior works on different GA frameworks. The key design novelties of Gretch are built
on these observations.

3.1 Diversity in Graph Representations

Our first key observation is that different GA frameworks employ different graph representations, and
these different graph representations in turn exhibit different DDAs. Figure 2 shows a breakdown of
the contribution of DDAs due to node property accesses to the off-chip main-memory accesses
across different GA frameworks and workloads. We make two observations from Figure 2. First,
DDA are a significant contributor to the off-chip main-memory accesses across most GA work-
loads (as high as 82% in PRD in Ligra, 45% on average). As a result, addressing the performance
impact of DDAs is key toward achieving high-performance GA. Second, GA workloads on Ligra
and Graph-500 exhibit array-indirect DDAs whereas GA workloads on GraphBIG exhibit both
array-indirect and pointer-based DDAs. This is because Ligra and Graph-500 use the CSR graph
representation whereas the graph representation in GraphBIG uses a combination of both arrays
and pointers. In GraphBIG, an array-indirect access first retrieves a pointer to the neighbor node’s
data structure, and then a pointer dereference retrieves the neighbor node’s property. As a result,
property accesses in GraphBIG incur both array-indirect and pointer-based DDAs.

Prior hardware prefetchers for DDAs identify only one type of DDAs [22, 24, 61, 66]. Expectedly,
these prefetchers are unable to deliver performance benefits across GA frameworks that have dif-
ferent DDAs. Prior GA-specific micro-architectural accelerators also work for one type of DDAs as
they are designed for the CSR graph representation DDAs [4, 12, 53, 67].

In summary, prior techniques to improve DDAs from GA workloads deliver sub-optimal perfor-
mance benefits for other graph representations. While we acknowledge CSR’s importance and pop-
ularity, we find that focusing on improving the performance for one particular type of graph rep-
resentation is restrictive. An important contribution of Gretch is that it is designed to improve GA
performance across different graph representations by identifying the common characteristics of

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

g. M. I_(au_shikll_g. Pekhimenl;os, and HéoPateI, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , PR- 1725, Nov.) .
P Yotk "R HArdWaf&Prefetcher for Graph Analytics 18:5

LP: I0: MEM LD ([Pl << 2 + 0x1234] - P2) // Load B[i] ROB

Il: MEM LD ([P2 << 2 + 0x5678] = P3) // Load A[B[i]]
I2: MEM ST (P3 - OxCDEF) // Store A[B[i]] in x

I3: ADD (P1 + 1 > Pl) // Increment I

I4: JMP LP

11 1 3 1
Cyele 0 [11]r0[r4[r3[r2[r1]r0]14]13]12]11 [N0]

(a) Code example of array indirect accesses. P denotes physical register.

\ 10 (ROB entry0)
b 10 (ROB entry 5)
' 11 (ROB entry 1)
,: T0(ROBentry10)|
________ g I1 (ROB entry 6) \

Cycle 7 |I1|I0(T4|I3|12|I1|I0(T4|TI3 (12 I1
________ .

(b) In-Order requests (c) Out-of-Order requests
to memory hierarchy. to memory hierarchy.

[] Operands not ready [] Operands ready [| Waiting for data response [[] Executed . Retired l/t Data request/response

(d) Out-of-order instruction schedule for example.

Fig. 3. Effect of instruction scheduling on identification of data-dependent accesses.

DDAs in GA workloads. We evaluate Gretch on different graph representations, and show that
Gretch improves GA performance for workloads deployed on different graph representations.

3.2 ldentifying Data-dependent Accesses

Our second key observation is that prior on-chip micro-architectural accelerators for GA relied on
hardware-software interaction from the GA framework resulting in application changes. It was nec-
essary for this hardware-software interaction to identify the start of DDAs in the GA workload to
deliver good performance. In this work, we focus on a purely hardware approach that (1) identifies
DDAs in GA workloads and (2) activates Gretch to train for DDAs without any interaction from
the workloads. Thus, application changes are not needed when employing Gretch.

We observe that designing a purely hardware approach for identifying DDAs is sensitive to the
instruction scheduling. In particular, identifying array-indirect DDAs in the presence of out-of-
order scheduling to the best of our knowledge, remains a challenge (see Figure 3).

Hlustrative example. Figure 3(a) shows a code example that generates array-indirect
DDAs where instruction I1 uses the data loaded by I0 to generate its memory address. The in-
dex i is assumed to be in physical register P1, and arrays A and B hold 4-byte elements. The base
addresses of A and B are 0x1234 and 0x5678, respectively. For this example, we use the following
equation to infer array-indirect DDAs [66]:

Address A[B[i]] = A’s base address + Offset size x BJ[i]. (1)

Figure 3(b) shows the order of memory accesses issued by an in-order core. For this access order,
using the data accessed by one execution of I0 and memory address of the following access issued
by I1 in the above equation can establish the DDA relationship between I0 and I1. Hence, for
in-order cores, a hardware mechanism can activate Gretch on any access as every memory access
from I0 is followed by a corresponding DDA from I1.

Figure 3(c) shows the order of memory accesses issued by an out-of-order core to the mem-
ory hierarchy, and Figure 3(d) shows a timeline of the memory accesses issued by instructions in
the reorder buffer (ROB). We denote an instruction I at ROB entry i as I @ i. We assume that
a memory request completes in 4 cycles. Unlike the in-order memory access schedule, multiple
memory accesses from I0 can precede the DDA from I1. This is shown in Figures 3(c) and 3(d),
where memory accesses scheduled by I0 @ 0 and I0@ @ 5 precede the memory access sheduled by
I1 @ 1. This is because of two reasons: (1) I0 is not dependent on any instruction for its address
computation, and (2) multiple accesses from I0 can be in flight based on the available memory

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

g. M. KaUShikerC%EKhim‘inlé% a'l\lnd Héonagel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , pp. 1-25, Nov. . .
P 18470 PP A. M. Kaushik et al.

Success rate

Fig. 4. Success rate of B[i] choice with ROB sizes.

level parallelism (MLP). Hence, the mechanism described for in-order instruction schedule cannot
be applied for out-of-order instruction schedule as it will result in inferring incorrect DDAs. For
example, using the data accessed by memory access issued by I0 @ 5 and the memory address of
the subsequent memory access issued by 10 @ 1 results in inferring incorrect DDA as the memory
address issued by I0 @ 1 uses the data accessed by 10 @ 0.

From our evaluation, we observed that this interaction of array-indirect DDAs and out-of-order
instruction scheduling is prevalent in GA workloads. This is because of two key reasons. (1) In
a graph representation such as CSR, which exhibits array-indirect DDAs, neighbors of nodes are
represented as array data structures. As real-world graphs are large and comprise of millions of
nodes, these neighbor arrays of nodes are dynamically allocated. Hence, the neighbor array of one
node is not contiguous with the neighbor array of another node. As a result, initial memory ac-
cesses to neighbors (B[i] accesses in Figure 3) are typically cache misses' resulting in an execution
scenario that is similar to Figure 3(d). (2) A conventional stride prefetcher can eventually capture
the strided accesses to the nodes’ neighbor arrays, and prefetch B[i] into the cache hierarchy. As
a result, stride prefetching of B[i] can expedite the virtual address computation of neighbor prop-
erty accesses (A[B[i]]). However, these accesses typically result in address translation misses in
the translation look-aside buffer (TLB). This is because the data B[i] that are used to construct the
addresses of A[B[i]] do not follow a particular pattern, which results in limited page locality [14].
Hence, a cache miss on a neighbor property access results in first fetching the appropriate ad-
dress translation, and then fetching the data from the requested address from the cache hierarchy
or off-chip memory. Out-of-order instruction scheduling can issue multiple independent memory
accesses during these long latency neighbor property misses to improve instruction throughput. In
particular, multiple accesses of B[i] can be scheduled during a TLB miss of A[B[i]] resulting in an
execution scenario similar to Figure 3(d). In summary, the identification of array-indirect DDAs is
a challenge in the presence of out-of-order instruction scheduling.

One technique that we explore in this work to address this challenge is to identify the
first producer access. For GA workloads where accessing nodes’ properties incur array indirect
DDAs (Figure 1(b)), this means identifying the first neighbor access of a node. The central ratio-
nale behind this technique is that the memory address of the following consumer access is depen-
dent on the data returned by the first producer access. Hence, the first producer access and the
following consumer access can be used to correctly infer the array indirect DDAs in the presence
of out-of-order instruction scheduling. From our evaluation, we find that this observation strongly
exhibits only for the first producer access.

To highlight the impact of the above observation, Figure 4 shows the success rate in identify-
ing array-indirect DDAs using different producer accesses for the PR workload in Ligra. Recall
that most DDAs in GA workloads executed in Ligra are array-indirect DDAs (Figure 2). For this
experiment, we performed a detailed instruction level analysis of the PR workload in Ligra, and
identified the producer (B[i]) and consumer memory instructions (A[B[i]]) that resulted in array

IThis is due to stride deviation observed by a stride prefetcher. We discuss this in detail in Section 4.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

g. M. I_(au_shikll_g. Pekhimenl;os, and HéoPateI, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , PR- 1725, Nov.) .
P Yotk "R HArdWaf&Prefetcher for Graph Analytics 18:7

indirect DDAs. We also recorded the offset size (size of B[i]) and the base address (address of ar-
ray A). During program execution, we used information about the memory address and accessed
data for the marked producer and consumer instructions, and applied Equation (1) to compute the
base address of A, and compared it with the recorded base address. A successful array-indirect
DDA identification is when the computed and recorded base addresses match.

We use the notation Pi to denote the ith producer access used for identifying array-indirect
DDAs. Therefore, P1 denotes the first producer access, P2 denotes the second producer access
and so on. We define success rate as the ratio of successful array-indirect DDA identifications
and the total number of identification attempts. For a producer access choice Pi, a 100% success
rate means that for each graph node’s exploration by the workload, the ith neighbor node’s
access (producer) and the following node property access (consumer) correctly identifies the
array indirect DDA. We vary the ROB size in the cores, which controls how far the producer can
execute ahead of the consumer.

For a ROB size of 1, any producer access can be used to correctly infer array-indirect DDAs with
high success rate (>90%). This is shown in Figure 4. A ROB size of 1 is an in-order core, and forces
the producer and consumer to issue memory accesses to the cache hierarchy such that a producer
access is followed by the corresponding consumer access (Figure 3(b)). However, for ROB sizes
greater than 1, all producer access choices with the exception of P1 begin to show lower success
rates in identifying array-indirect DDAs. A low success rate translates to missed opportunities in
identifying and optimizing DDAs, and hence, low performance benefits. Larger ROBs allow the
producer to execute further ahead than the consumer. As a result, for a producer access other than
P1, the following consumer access may not be dependent on it; rather the consumer access may
be dependent on a much prior producer access. This is because for producer accesses other than
P1, there is little to no guarantee that the following consumer access is dependent on the data
accessed by the preceding producer access. However, P1 continues to register a high success rate
(>90%) even with higher ROB sizes. From our evaluation across GA frameworks and workloads,
including PR, we observe that the ROB contents prior to a node’s exploration does not have pend-
ing memory accesses from the previous node’s exploration. As a result, consumer accesses after
the first neighbor access of a node are not from a previous node’s exploration. We attribute this
to one of two reasons: (1) ROB flushes due to branch mis-predictions, (2) execution of routines
between exploration of nodes that allows any pending memory accesses from the previous node
exploration to complete before the start of the next node exploration. Branch mis-predictions can
be either due to mis-predicting the degree of the node (number of node’s neighbors) currently
being explored or mis-predicting the node property value.

In the following section, we show how we use this intuition to build a hardware mechanism
in Gretch to identify array-indirect DDAs in the presence of instruction scheduling. Identifying
pointer-based DDAs do not encounter the same challenge as that of array-indirect DDAs. This is
because pointer-based DDAs can be identified using simple hardware based on producer-consumer
tag matching as done in Reference [61] irrespective of the instruction scheduling. Note that while
we explicitly mark the producer and consumer instructions in the GA workload for the above
experiment, Gretch identifies the producer and consumer instructions in hardware without any
assistance from the GA workload and changes to the GA workload.

4 GRETCH: KEY DESIGN IDEAS

We describe four key design ideas of Gretch using Figure 5 that shows a high-level design of our
approach.

Stride prefetching (D. Gretch works with a conventional stride prefetcher (SP) that identifies and
optimizes strided accesses. Across multiple graph representations, we find that a node’s neighbors

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

é. M. I_(aushikll_GCFc’)ekhimtinI;% ?\lnd HéoP;(;el, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , pp. 1-25, Nov. . .
P 1§4°0) pe A. M. Kaushik et al.

Prefetch
requests

Stride prefetcher . q
Relationship table (RT)
s D P

Communicate stride

Cache access

g

Identified DD
accesses

deviation
PC
Address data table (ADT Training logic
) () g log

Virtual address of
L1-D cache miss

Data from L2

Fig. 5. High-level design of Gretch.

0xA0 0xDO Before access to 0xC0 Before access to 0x10
X: PC | Stride | Lastaddress PC| Stride | Lastaddress
8-bytes P 8B 0xB8 P 3B 0xDO
After access to 0xC0 After access to 0x10
0x10 0x38 . .
X Stride = abs(0xC0-0xB8) = 8 Stride = abs(0x10-0xD0) = 128
Y:
— PC| Stride | Lastaddress Last address
8-bytes P| 3B 0xC0 P 0x10
M 1 f neigh
(a) Sample graph (:()) de:mory ayout of neighbor (c) Access to X’s neighbors (d) Access to Y’s neighbors

Fig. 6. lllustrative example of hardware approach for activating Gretch.

typically use an array data structure to benefit from spatial locality offered by arrays. Hence, ex-
ploration of a node’s neighbors exhibits strided access patterns that can be captured and optimized
by SP. From our evaluation, SP speeds up GA workload execution by up to 41% over no prefetching
(average 10%). Hence, GA workloads benefit from SP. In this work, we use the reference prediction
table-based SP [21] that identifies strided accesses on a per-memory instruction granularity.

Hardware approach for activating Gretch (&. We explain the key intuition behind the purely
hardware mechanism that activates Gretch to begin training for DDAs for out-of-order and in-
order instruction scheduling using Figure 6. Figure 6(a) shows a graph with two highlighted nodes
® and @, and Figure 6(b) shows the memory layout of the neighbors of ©® and ©.

GA workloads typically execute the following sequence of operations: (1) explore a node’s
neighbors, (2) modify the node’s property or the node’s neighbors’ properties, and (3) mark a
neighbor to be explored next based on the workloads’ requirements. For the example in Figure 6(a),
assume that a GA workload explores the neighbors of ®, marks @ to be explored, and then the GA
workload explores the neighbors of @. The neighbors of ® and @ are stored in two different ar-
rays as shown in Figure 6(b). GA frameworks typically layout the identifiers of a node’s neighbors
in contiguous memory locations to benefit from spatial locality [25, 37, 55, 64].

The GA workload begins exploring the neighbors of &, which incurs strided accesses on the
neighbor array. These strided accesses are captured by SP, and the SP records the computed stride
and the memory instruction that accesses the neighbor array. Figure 6(c) shows the SP contents
for the memory instruction P that accesses the neighbor array. The SP sees the same stride value
of 8 bytes during the exploration of ®’s neighbors. After exploring all neighbors of &, the GA
workload begins to explore the neighbors of @. On accessing the first neighbor of @), the computed
stride value does not match that recorded in the SP entry (8-bytes). This is shown in Figure 6(d)
where the computed stride between the last accessed neighbor of ® and the first neighbor of ®

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

g. M. I_(au_shikll_g. Pekhimenl;os, and HéoPateI, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , PR- 1725, Nov.) .
P Yotk "R HArdWaf&Prefetcher for Graph Analytics 18:9

does not match the stride recorded in the SP. This is because the memory layout of neighbors
of © are not contiguous with that of neighbors of ®. In real-world graphs that have millions of
nodes and billions of connections, neighbor arrays of different nodes are dynamically allocated,
and as a result, the memory layout of neighbor arrays of adjacent nodes may not be contiguous to
each other. As a result, SP observes a deviation in computed stride when the GA workload begins
exploring a new node. After exploring the first neighbor of @, the SP observes constant stride
value of 8-bytes, and identifies the strided access pattern to neighbors of ®.

Gretch uses this deviation in the computed stride as a way to identify the first access of a node’s
neighbors, and activate its recording of memory access information. As a consequence, this hard-
ware mechanism allows Gretch to detect array-indirect access patterns in the presence of out-of-
order instruction scheduling. We implement this hardware mechanism by enabling communica-
tion between SP and Gretch as shown in Figure 5. SP communicates the PC of a high confidence
memory instruction that previously exhibited strided accesses when it observed a deviation in the
computed stride to Gretch.

ADT and RT ®. To identify DDAs, Gretch first records access information about L1-D cache
misses such as the PC of the memory instruction that issued the L1-D cache miss, the memory
address, and data returned by the cache miss in a hardware structure called the address-data table
(ADT). Gretch then trains on the contents of the ADT, and records DDAs inferred by the training
logic in a relationship table (RT). Gretch looks up the RT to generate prefetch requests.

Distinct recording and training phases (@. Gretch separates the recording of access informa-
tion in the ADT and the training phase to infer DDAs from the ADT contents. This results in
two benefits. First, the ADT design is straightforward, and is not optimized for one particular
DDA type. This is unlike hardware structures used in prior works that were tightly coupled with
the logic to identify a particular DDA type [61, 66]. The second benefit is that multiple training
logic for identifying different DDA types can be simultaneously applied on the ADT contents. An
alternative is to combine multiple specific DDA prefetchers that identify different DDAs, which is
unattractive due to its high hardware overhead.

Gretch operates on virtual addresses that result in misses in the L1-D cache, and prefetches data
into the L1-D cache. Gretch generates virtual addresses for prefetch requests, and accesses the
L1 TLB to convert the virtual addresses of prefetch requests to corresponding physical addresses.
If a prefetch request generated by Gretch misses in the TLB, then the TLB generates the neces-
sary memory requests to retrieve the translation followed by the data contents of the prefetch
request. Note that Gretch does not optimize the address translation of prefetch requests, and any
address translation misses due to prefetch requests triggers the appropriate mechanisms (software
or hardware) to resolve the address translation.

5 GRETCH: DETAILED OPERATION

Gretch’s operation begins when it receives communication from SP that a deviation in stride oc-
curred. We limit SP to only communicate stride deviations for memory instructions that previously
exhibited stride behavior with high confidence. On receiving this communication, Gretch performs
the following two steps: ADT population, and training on the contents of the ADT to recognize
DDAs. Note that when Gretch is populating the ADT, Gretch does not simultaneously train on
the ADT contents. Similarly, when Gretch is training on the ADT contents, no new entries are
added to the ADT. After completing these steps, Gretch waits for the next communication from
SP. When this is received, Gretch clears the ADT and repeats these two steps. We provide details
about these steps in the following subsections using the example in Figure 7.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

g. M. I_(au_shiklI_G. Fc’)ekhim(inlgas, ?\‘nd Héonagel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , pp. 1-25, Nov. . .
P 184 PP A. M. Kaushik et al.

L1-D cache misses ADT ADT pairs DD inferred

PC Address Data PC| Address 1| Datal [AddressII| Data Il <A,B>, <A,C>, |None
A 0x989f8 0x0] <B,D>, <C,D>

0x989f8 0x0
B 0xbb0f0 O0xce30 0xbb0f0 | 0xce30 <A,D> Absolute data difference of A = 0xc2
0xce30 0x878

0xce30 0x878 Absolute address differenceof D = 0x6100
0x9908 0xfff0o J

0x9908 | Oxfff0 Ri;naxlderqtg.xﬂloo/oxsf = oA s
0x9700 0x££0 rray-indirect access between A an:
0x98al8 0xc2]

C

D

E

A <B,C> Data accessed by B = Memory address of C
B 0xb3f8 0x2c70 H l

(o]

D

A

o|Q|w| >

=> Pointer-based access between B and C

0x2c70 0x129 Producer | Consumer | Type Base Size | Predicted |Conf
0xfa08 Oxff£f0 PC| AddressI| Datal |Address II| Data IT address address
0x8a38 0x454 0x989f8 0x0 0x98al8| 0xc2 B C 1 - - 0

A
B 0xb8as8 0x4c20 / B | 0Oxbb0f0 | 0xce30 | 0xb3f8 |0x2c70 A D 0 0x989f8 [0x80 0
C | 0xce30 0x878 0x2c70 | 0x129 . . _
D | 0x9908 | OXEEE0 | 0x£a08 |OXELE0 Offset size = Quotient of 0x6100/0xc2 = 0x80
Base address = 0xfa08 — 0xc2 * 0x80 = 0x989f8

(a) ADT population. (b) Training on ADT pairs.

Fig. 7. Gretch detailed operation example.

PC of
instruction i
and

Address a of
i’s memory
access

Yes Allocate ADT entry

‘ for i with

Address I =a

Free
entry in

Search
for PC in
ADT?

Is Phase =
Recording?

ADT
Is ADT full Set No Increment cache
Phase = Training or miss count Address IT=a for i’s — e?t;l);nf;’r miss count

> Threshold? ADT entry

Fig. 8. ADT population mechanism.

5.1 ADT Population

The ADT records access information of L1-D cache misses. As shown in Figure 7(a), the ADT stores
the PC, the memory address, and the contents of the data accessed by two L1-D cache misses of a
memory instruction. In Figure 7(a), Address I/Il and Data I/II refer to the first/second L1-D cache
miss to the same PC. Gretch requires access information for two L1-D cache misses due to its
general training logic to identify DDAs, which we describe in Section 5.2.

We make two key design choices in the mechanism used for populating the ADT. These choices
are necessary for the training logic to correctly identify DDAs. First, entries in the ADT are in-
serted in the order of L1-D cache misses. Thus, for a DDA pair, the producer is recorded before
the consumer in the ADT. In Section 5.2, we explain how this simplifies the training logic. Sec-
ond, Gretch does not evict an ADT entry on an ADT capacity miss. This is because evicting an
ADT entry on an ADT capacity miss disrupts the order in which the ADT records the information.
Allowing for this disruption disallows the training logic from correctly identifying DDAs.

Mechanism. Figure 8 describes the ADT population mechanism. The ADT first receives the PC of
a memory instruction that misses in the L1-D cache, and its memory address (©). Gretch accesses
the ADT if Gretch is recording information in the ADT (®). The PC is used as an index into the
ADT. Gretch creates a new ADT entry if no ADT entry associated with PC is found and the ADT is
not full (®, ®, ®). Gretch updates an existing ADT entry on an ADT hit if the corresponding ADT
entry has access information for only one L1-D cache miss (@), ®, @). Gretch does not update the
ADT on an ADT hit if two L1-D cache misses are recorded in the corresponding ADT entry (&, ®,
®). Gretch does not evict an ADT entry on an ADT capacity miss. Gretch stops the ADT population
when the ADT is completely full or a threshold number of cache misses has been observed (1000
cache misses), and begins the training phase (®, ©®).

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

g. M. I_(au_shikll_g. Pekhimenl;os, and HéoPateI, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , PR- 1725, Nov.) .
P Yotk "R HArdWaf&Prefetcher for Graph Analytics 18:11

Hlustrative example. Figure 7(a) shows the ADT population mechanism on a 4-entry ADT for a
sequence of L1-D cache misses. Initially, the ADT is empty. Memory request issued by PC A misses
in the L1-D cache. Gretch looks for an existing ADT entry for PC A, and does not find an ADT entry
for PC A. As a result, Gretch creates a new ADT entry for PC A, and populates this entry with the
access information of PC A’s cache miss. Similarly, ADT entries are created for L1-D cache misses
issued by PCs B, C, D. The L1-D cache miss from PC E (highlighted in red) encounters an ADT ca-
pacity miss; thus, it is not recorded in the ADT. The second time the L1-D cache misses on PCs A,
B, C, D, the corresponding memory address and data are stored in Address II/Data II of their corre-
sponding ADT entries. Once the second access fields are filled, the ADT does not record additional
information for the same PC. For instance, the third L1-D cache miss on PC A to address 0x8a38 is
not recorded as the corresponding ADT entry has access information for two L1-D cache misses.

5.2 Training on ADT Contents

The training step creates potential producer-consumer pairs from the contents of the ADT, and
identifies DDAs from the potential producer-consumer pairs. Identified DDAs are inserted into the
RT.

5.2.1 Creating ADT Pairs. Recall from Section 5.1 that the ADT is filled in the order of L1-D
cache misses. Hence, a producer for a DDA must be recorded before the corresponding consumer
in the ADT. Exploiting this ADT population order reduces the number of potential producer-
consumer pairs to train on by only considering pairs of ADT entries such that one ADT entry
(potential producer) precedes another ADT entry (potential consumer). For example, a 4-entry
ADT has 16 possible ADT pair combinations. By exploiting the ADT population order, Gretch only
needs to train on 6 ADT pairs.

5.2.2 ldentifying DDAs. For each ADT pair, Gretch applies training logic to infer pointer-based
or array-indirect DDAs relationship.

Pointer-based accesses. Gretch identifies pointer-based accesses by comparing the data accessed
by a potential producer with the memory address of the corresponding potential consumer [61].
ADT pair with PCs B and C exhibit pointer-based access as shown in Figure 7(b). The data accessed
by PC B is equal to the memory address accessed by PC C. The RT entry for this DDA is shown
in Figure 7 where the producer is set to PC B and the consumer is set to PC C. The DDA type is a
binary bit where bit value 1 denotes a pointer-based DDA.

Array-indirect accesses. Equation (1) (Section 3.2) captures the array-indirect DDA relationship.
There are two unknown values in Equation (1), which are necessary to identify an array-indirect
DDA: (1) A’s base address, and (2) the offset size. Prior GA-specific accelerators explicitly commu-
nicated these unknown values to the accelerator [4, 12, 53]. However, prior work IMP [66] used
the accessed data and memory address for a pair of memory accesses and assumed a fixed set of
offset sizes to compute A’s base address. This set restricted the offset sizes to common data types,
and was done primarily to reduce IMP’s hardware overhead [66].

We find that identifying array-indirect accesses for a set of offset sizes is restrictive especially for
GA. This is because graph representations may encode the properties of nodes and edges in a cus-
tom structure resulting in custom offset sizes. For example, GraphBIG [55] uses custom structures
to encode the properties of nodes. As a result, applying IMP [66] to GA workloads in GraphBIG
does not infer the array-indirect DDAs.

Gretch’s approach to identifying array-indirect accesses is different, and general when com-
pared to IMP. Figure 7 shows the identification of array-indirect accesses for the ADT pair PC A
and PC D. Gretch uses an unsigned integer division circuit that divides the absolute difference in

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

g. M. I_(au_shiklI_G. E)EKhiminlé% a'l\lnd Héonagel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , pp. 1-25, Nov. . .
P 18499 PP A. M. Kaushik et al.

memory addresses of the potential consumer and absolute difference in accessed data of the po-
tential producer. If the remainder is 0, then an array-indirect DDAs is inferred and recorded in the
RT with the quotient as the offset size. A’s base address can then be computed using the access
information in the ADT pair along with the computed offset size by rearranging Equation (1). This
information is necessary to generate prefetch requests for array-indirect DDAs. The ADT pair with
PCs A and D exhibit array-indirect DDAs, and is recorded in the RT as shown in Figure 7. The type
is set to 0, which represents array-indirect DDA type.

5.3 Generating Prefetch Requests

Gretch first builds confidence in the RT entries populated by the training logic, and then generates
prefetch requests for RT entries that satisfy a confidence threshold. The confidence of a RT entry is
updated when a predicted address for the consumer, which is constructed using the information in
the RT and data accessed by the producer, matches the memory address accessed by the consumer.
The Conf field in a RT entry records its confidence as shown in Figure 7(b). On a cache access,
Gretch compares the PC of the access with the producer PCs in the RT. On a RT hit, Gretch fills
the consumer’s predicted memory address field based on the DDA type. For a pointer-based DDA,
Gretch predicts the consumer’s memory address as the data accessed by the producer. For an array-
indirect DDA, Gretch uses the base address and offset size information to construct the consumer’s
predicted address.

The confidence update mechanism in Gretch takes into account the impact of out-of-order in-
struction scheduling on data-dependent accesses. To this end, Gretch compares a predicted ad-
dress in an RT entry to a window of subsequent memory addresses issued by the corresponding
consumer. If the predicted address does not match any of the memory addresses issued by the cor-
responding consumer in this window, then the confidence of the RT entry is reduced. Otherwise,
the confidence of the RT entry is increased on a match. Gretch computes a new predicted address
of an RT entry when it updates the confidence of the RT entry.

Gretch generates prefetch requests for RT entries that have confidence greater than a thresh-
old. For a strided producer, Gretch schedules prefetch requests based on the data returned by
strided prefetch candidates issued by SP. Hence, Gretch’s prefetch distance is equal to that of SP.
Gretch also generates multi-way (one producer, multiple consumers) and multi-level (consumer
of one DDAs is producer for another DDAs) prefetch requests [66].

5.4 Implementation Details

The training logic in Gretch uses a simple 64-bit wide comparison circuit to identify pointer-based
accesses, and an unsigned integer division circuit to identify array-indirect accesses. In our simula-
tion, we use a single unpipelined division circuit, which has a latency of 10 cycles and throughput
of 1 operation every 10 cycles [30]. To minimize the hardware overhead, Gretch uses one divi-
sion and comparison circuit for all ADT entries. Hence, Gretch trains on one ADT pair, and then
trains on the next ADT pair after 10 cycles. From our empirical evaluation, we found that the per-
formance benefits of this training approach is close to the ideal scenario where each ADT pair is
trained in parallel, and there is no latency to identify DDAs. This is because DDAs feature predom-
inantly in the L1-D cache misses of GA workloads, and once Gretch identifies a DDA relationship,
it generates prefetch requests on producer accesses.

Area overhead. We evaluated different ADT and RT sizes and found that an 8-entry ADT and
a 4-way 4-entry RT offered the best performance benefits across the GA workloads. We assume
virtual memory address space of 48-bits and data words of 64-bits. Each ADT entry consists of three
address fields (PC, Address I, and Address II in Figure 7) and two data word fields (Data I and Data

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

é. M. I_(au_shikll_g. Pekhimenlé%, and HéoPateI, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , PR- 1725, Nov.) .
P Yotk "R HArdWaf&Prefetcher for Graph Analytics 18:13

Table 1. GA Workloads and Graph Inputs

(a) Evaluated GA workloads (b) Graph inputs
GA framework | Workloads | Graph | Topology | V| | |E| |
GraphBIG |Breadth-first search (BFS), Betweenness Centrality Pokec [40] Social network 1M | 30M
(0, Dot s 09, o ot €0, 100 (17 | Soctnetonc_Jonnd v
Source Shortest Path (SSSP), Triangle Count (TC), USA-road [40] Road network 24M | 57M

Topological Morph (TM), Connected Components
(CC), Degree Centrality (DC)

Ligra BFS, CC, Radii Estimation (Radii), PR, BC, SSSP,
BFS-based CC (BFSCC), Collaborative Filtering (CF),
Maximal Independent Set (MIS), Delta stepping PR
(PRD)

Graph-500 (G500)(BFS

Kronecker [54] | Synthetic power-law | 4M |128M
Uniform [15] | Synthetic uniform | 1M | 33M

I in Figure 7). The hardware overhead of an 8-entry ADT is 8 X (48 X 3 + 64 X 2) = 0.28kB. Each
RT entry consists of four address fields (Producer, Consumer, Base address, and Predicted address
in Figure 7). The remaining fields in an RT entry take up 12 bits. The hardware overhead of a
16-entry RT (4-way 4-entry RT) is 16 X (48 X 4 + 12) = 0.4kB. Comparing the combined storage
overhead of Gretch (0.68 kB) with prior DDAs prefetchers such as IMP [66] and LDSP [61], IMP is
3% bigger than Gretch, and LDSP is 9.9% bigger than Gretch. We attribute Gretch’s low hardware
overhead to its simple ADT design due to distinct recording and training phases.

Energy overheads. We model the energy per access to Gretch’s structures using CACTI [42], and
assume 32 nm technology process. An access to the ADT and RT consume 0.8 and 0.5 pJ of energy,
respectively, which are 2.3% and 1.4% of a 32-kB-sized L1-D cache access energy.

6 METHODOLOGY

We evaluate the performance of Gretch using the GA frameworks and workloads described in
Table 1(a). We use a combination of real-world graphs derived from social networks and road
networks, and synthetically generated graphs. Table 1(b) describes the configurations of the graph
inputs. We prototype Gretch using the full-system gem5 micro-architectural simulator [16]. We
use gem5 because it provides a detailed model of out-of-order cores, and we need this detailed
model to develop a method to identify DDAs for out-of-order instruction scheduling. gem5’s core
and memory models have been subjected to several validation efforts that quantify the modeling
errors in comparison to real hardware platforms [7, 18, 28]. One recent validation effort by Akram
and Sawlha [7] showed that for dependent memory instruction execution on out-of-order cores,
which is the main focus of this article, the difference in average error in instruction per cycle (IPC)
values between gem5 models and real hardware platforms is less than 10%. Table 2 describes the
ALPHA ISA-based multi-core system simulated in gem5. Prior works such as References [8, 46, 47,
50] have also used the ALPHA ISA support in gem5.

We collect performance metrics when the GA workload starts exploring the graph. The reported
performance metrics do not take into account the time to construct or read the input graph. We run
each workload for a billion instructions across all cores in our multi-core setup. We use McPAT [41]
to obtain the runtime dynamic power of the simulated system with Gretch enabled. We use the fol-
lowing methodology to derive GA workload power consumption. We first use McPAT [41] to derive
the runtime dynamic power of the simulated multi-core processor when executing GA workloads
for the no prefetching configuration and with Gretch enabled. We then derive the runtime main-
memory power consumption for each GA workload from the gem5 simulator, along with statistics
on reads and writes to Gretch’s hardware structures (ADT and RT). The runtime main-memory

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

é. M. I_(au_shiklI_G. Fc’)ekhim(inlé% a'l\lnd Héonagel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , pp. 1-25, Nov. . .
P 18492 PP A. M. Kaushik et al.

Table 2. Simulation Framework

| Parameter | Configuration |

Core Out-of-order, 4-wide issue, 128-entry ROB, ALPHA ISA

Cache L1-I and L1-D cache: 32 kB, 2-way, 2-cycle tag access, 2-cycle data access
latency, 64B cache line, 12 MSHRs per core, shared L2 cache, 8 MB, 8-way,
20-cycle tag access, 40-cycle data access, 32 MSHRs, 64-entry D-TLB
Multicore | 8 cores, private L1 caches, shared L2 cache, point-to-point interconnect,
snooping, MOESI cache coherence protocol

DRAM 4GB memory, 1600MHz, 2 ranks/channel, 8 banks/rank, tRC=48.75ns,
tRCD=13.76ns, tRAS=35ns, tWTR=7.5ns, tRP=13.75ns, adaptive
open-page policy, FR-FCFS scheduling policy, 12.8 GB/sec bandwidth
Prefetcher | 128 entry prefetch queue, IMP: 4 entry IPDT, 16 entry PT, LDSP:
128-entry PPWT, 256-entry CT, Gretch: 8-entry ADT, 4-set 4-way RT,
10-cycle division latency

power consumption takes into account additional memory accesses due to Gretch (inaccurate
prefetches and write-backs). Finally, we use the energy estimates of the ADT and RT presented in
Section 5.4 to compute the total power consumption of GA workloads with Gretch enabled.

The prefetcher configurations are listed in Table 2. We compare Gretch against SP [21], IMP
[66] that identifies array-indirect accesses, and the LDS prefetcher (LDSP) [61] that identifies
pointer-based accesses. In IMP, the indirect pattern detector table (IPDT) computes base address
candidates, and the prefetch table (PT) records the memory instructions exhibiting array-indirect
accesses. In LDSP, the potential producer window (PPW) records access history of memory
instructions, and the correlation table (CT) records pointer-based relationships. We evaluate
Gretch with an 8-entry ADT and a 4-entry 4-way RT. All the evaluated prefetchers generate
prefetch candidates with a prefetch depth of 4. For Gretch and LDSP, pointer-based prefetch
candidates are generated with a prefetch width of 2. All the data-dependent prefetchers are
equipped with a SP [21] of 64 entries that identifies strided memory access patterns. All the
evaluated prefetchers prefetch into the private L1-D caches on cache misses and prefetch hits.

We are aware of several recent address-based prefetchers such as References [35, 36, 49, 59] that
have been proposed to improve the identification of complex address patterns. These prefetchers
perform better than the conventional SP as they can identify other patterns in the memory ad-
dresses such as repeating sequences of multiple strides, and correlating addresses in addition to
regular strided access patterns. DD accesses in GA typically do not exhibit repeating sequences of
strided accesses and address correlation patterns. This is because nodes in real-world graphs have
varying degrees of connections, and nodes have different neighbor connections. As a result, these
prefetchers are insufficient to capture the DD accesses in GA workloads, and their performance
benefits are equivalent to SP as they can only identify and optimize strided neighbor accesses.
A recent in-depth characterization of GA workloads on micro-architecture by Basak et al. [12]
showed that the performance offered by address correlation prefetchers such as References [56,
63] was on par with that offered by SP. Hence, we compare Gretch against SP, and do not evaluate
Gretch against these recent address-based prefetchers.

7 RESULTS

We evaluate Gretch using (1) execution time speedup (Section 7.1), (2) prefetch metrics such as
prefetch accuracy and coverage (Section 7.2), (3) overall power consumption (Section 7.3), and
(4) performance sensitivity to ADT size, and graph configurations (Section 7.4). Unless specified,

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

A. M. Kaushik, G. Pekhimenko, and H. Patel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code

Optimization{TACQ), pR. }725, Nov. 2020, .
P reth-"R ard\‘warezﬁrefetcherforGraphAnalytlcs 18:15
) 2
18 7 = ‘
N R T B B R T T B B T B I
=14 S 5 oz 3 o ° a s 5 g @ = o 2z a
R
208
“4
02
0
» U oE 2 U U B & U U Y U ¥ U e U U(g|S
= O 3 7] £ X T a2 X 0 A~ 2 0 AR
=z < % = = A 2 5|°
Ligra GraphBIG

BSP mIMP mLDSP mGretch

Fig. 9. Performance speedup across different GA workloads and frameworks.

GA workloads on Ligra operate on the Pokec social network graph, GA workloads on GraphBIG
operate on the LDBC social network graph, and Graph-500 operates on the Kronecker graph. For
each evaluation criterion, we discuss observations for each GA framework with respect to the
memory access patterns they exhibit. We evaluate the effectiveness of Gretch and other DDA-
specific prefetchers across all GA workloads and frameworks listed in Table 1. Due to space con-
straints, we present only the speedup results for all workloads, and present the remaining evalu-
ation metrics for the BFS, CC, PR, and SSSP workloads.

7.1 Speedup

Figure 9 shows the performance speedup of Gretch and different DDA-specific prefetchers com-
pared to the baseline that has SP.

General observations. (1) Gretch provides an average speedup of 25% (up to 89%) over SP and
IMP, and 20% (up to 89%) over LDSP. This is because Gretch can identify different DDAs re-
sulting in performance speedups across different GA frameworks. (2) Gretch does not improve
performance over SP for TC and TM GA workloads. This is because these workloads do not
operate on node properties resulting in no DDAs. Recall from Figure 2 that TC and TM workloads
across Ligra and GraphBIG frameworks exhibit low or no DDA contribution to the off-chip
memory accesses. (3) GA workloads such as PR and CC exhibit higher performance benefits with
Gretch than other GA workloads. This is because these workloads are active-all workloads where
all the nodes in the graph are visited and their properties are computed upon. Hence, the prefetch
coverage (Section 7.2) of Gretch on these workloads are high. However, workloads such as BFS
and BC explore a select number of nodes in the graph based on the choice of source node resulting
in lower prefetch coverage as shown in Section 7.2. We next describe GA-framework-specific
performance observations.

Ligra and Graph-500. GA workloads in Ligra and Graph-500 exhibit array-indirect DDAs as
they operate on the CSR graph representation (Figure 2). Gretch shows 18% average performance
speedup (up to 57%) over SP and IMP for Ligra, and 89% performance speedup over SP and IMP
on Graph-500. LDSP does not provide performance benefits over SP as property accesses in Ligra
do not exhibit pointer-based DDAs. As a result, LDSP’s performance benefits are solely from
the attached SP that identifies strided accesses. The array-indirect DDAs in Ligra and Graph-500
operate on commonly used data types, and can be identified by IMP [66]. However, our evaluation
shows that IMP provides little to no performance speedup over SP for workloads on Ligra and
the Graph-500 benchmark. In Section 7.1.1, we perform additional experiments and provide a
detailed analysis of IMP’s inability to identify array-indirect DDAs in the presence of out-of-order
instruction scheduling.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

g. M. I_(au_shiklI_G. E)EKhiminlé% a'l\lnd Héonagel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , pp. 1-25, Nov. . .
P 1842 PP A. M. Kaushik et al.

GraphBIG. GA workloads in GraphBIG exhibit both array-indirect and pointer-based DDAs.
Gretch identifies both these DDAs, and delivers 28% average performance speedup (up to 35%)
over SP and IMP, and 20% average performance speedup (up to 30%) over LDSP. The array-
indirect DDAs in GraphBIG are to custom sized data structures that IMP cannot identify. Hence,
IMP does not improve over SP. However, Gretch’s division circuit captures the array-indirect
DDAs in GraphBIG, and generates appropriate prefetch requests. LDSP captures the pointer-based
DDAs resulting in an average performance improvement of 4% (up to 11%) over SP. However,
LDSP cannot capture array-indirect DDAs resulting in missed opportunities to further improve
GA performance.

7.1.1 Analyzing Impact of Out-of-Order Instruction Scheduling on IMP. Although IMP is de-
signed to identify array-indirect DDAs, we observed that it provides little to no performance
speedup over SP. This is because IMP’s mechanism to update confidence of an identified DDA is
hinged on in-order instruction scheduling. In particular, we observed that IMP identifies the array-
indirect DDA relationship in Ligra and G500.> However, it does not generate enough confidence
in the identified array-indirect DDA, which results in missed opportunities for IMP to generate
prefetch requests. This is because IMP’s mechanism to adjust the confidence in the identified
array-indirect DDA relationships is also tightly coupled with in-order instruction execution [66].
However, as described in Section 3.2, the interaction of DDAs accesses and out-of-order instruc-
tion scheduling renders identification techniques that work for in-order instruction scheduling
ineffective. As a result, IMP’s performance benefits are solely due to strided prefetch candidates
issued by SP.

To confirm this observation regarding IMP, we perform two experiments. In the first experiment,
we executed the Graph-500 workload on a multi-core simulation configuration with in-order cores.
Graph-500 was used in the IMP evaluation [66], and is publicly available. The cache hierarchy
and prefetcher configurations remain unchanged. We found that IMP and Gretch exhibited simi-
lar performance improvements (2X performance improvement over SP) with in-order cores. This
is because in-order instruction scheduling does not allow independent producer accesses to access
the cache hierarchy ahead of the corresponding consumer accesses. As a result, the prefetchers ob-
serve the array-indirect DDAs as a sequence of one producer access followed by the corresponding
consumer access, which aligns with IMP’s identification and confidence update mechanism.

In the second experiment, we increase the hardware table sizes in IMP, and change the con-
fidence update mechanism in our IMP implementation to a window-based mechanism used in
Gretch (Section 5.3). In this experiment, we executed the Graph-500 workload on the multi-core
simulation configuration described in Table 2 with out-of-order cores. There are three main hard-
ware tables in IMP: (1) indirect pattern detector table (IPDT), (2) prefetch table (PT), and (3) the
base address table [66]. For an array-indirect DDAs A[B[i]], (1) computes possible base addresses
of A using predefined offset sizes of B[i] and the data of B[i], and (2) stores the identified array-
indirect DDAs, and generates prefetch array-indirect prefetch candidates. Each entry in (1) consists
of (3), which stores the computed-based addresses. We use the notation (IPDT, PT, BA) to denote
the table sizes in IMP. For example, (4, 16,4) describes an IMP configuration with IPDT size of
4 entries, PT size of 16 entries, and the base address table size of 4 entries.

Figure 10 shows the speedup of different IMP configurations over the baseline using the original
confidence update mechanism described in Reference [66], and with the window-based confidence
mechanism described in Section 5.3. We make two key observations. First, increasing the sizes of

2IMP identifies array-indirect DDA relationships when the strided access B[i] is a prefetch hit, and the address translation
of the subsequent A[B[i]] access is available in the TLB (TLB hit).

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

A. M. Kaushik, G. Pekhimenko, and H. Patel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code

Optimizatiop Fat W R Hard\wafe Prefetcher for Graph Analytics 18:17

2 1.89
.E 1.8 1.65 1.68
1.6
314 133
L 12 112 112 103
§ 1 U3
©0.8
2.0.6
S04
802
& 0
<4,16,4> <16,64,4> <16,64,32> <4,16,4> <16,64,4> <16,64,32>
IMP IMP w/ window mechanism Gretch
Fig. 10. Speedup of different IMP [66] configurations on Graph-500 benchmark.
100% e
2 80% CEES
£ 60%
g 40%
< 20%
0%
CC SSSP| BFS CC SSSP | G500 | GM

Ligra GraphBIG
ESP zIMP =LDSP ©Gretch

Fig. 11. Prefetch accuracy.

the hardware tables in the original IMP design does not offer the same performance improve-
ment over the baseline compared to Gretch. For example, the configuration (16, 64,4) quadru-
ples the IPDT and PT sizes used in Reference [66]. We observe that this configuration offers the
same speedup (12% over the baseline) compared to the (4, 16,4) configuration, which we used in
Figure 9. Second, changing the confidence update mechanism to a window-based mechanism in
IMP improves IMP’s performance over the baseline across different configurations. The (4, 16, 4)
configuration in the modified IMP implementation offers 65% performance improvement over the
baseline. This is because the window-based confidence mechanism allows IMP to build confidence
in the identified array-indirect DDAs in the presence of out-of-order instruction scheduling, and
generate prefetch candidates. However, the performance of the updated IMP implementation still
falls short of that provided by Gretch (89%). Unlike Gretch, IMP uses any producer access to iden-
tify array-indirect DDAs accesses. As shown in Section 3.2 (Figure 4), such a technique has low
success rate in identifying array-indirect DDAs accesses. As a result, IMP takes longer to iden-
tify the array-indirect accesses compared to Gretch, resulting in its lower performance benefits
compared to Gretch.

7.2 Prefetch Efficiency

We measure prefetch efficiency using two common metrics: prefetch accuracy (Figure 11) and
prefetch coverage (Figure 12). These metrics have been used in prior works to evaluate prefetch
efficiency [49, 58, 63, 66]. From Figure 11, Gretch achieves an average prefetch accuracy of 69% (up
to 81%). However, SP, IMP, and LDSP achieve an average prefetch accuracy of 75%, 75%, and 68%,
respectively. We make two observations regarding Gretch’s prefetch accuracy. First, active-all GA
workloads such as PR and CC register high prefetch accuracy with Gretch (>70% for Ligra) as all
nodes in the graph and their properties are explored on every iteration.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

g. M. I_(au_shiklI_G. E)EKhiminlé% a'l\lnd Héonagel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , pp. 1-25, Nov. . .
P 18482 PP A. M. Kaushik et al.

100%
80%
60%
40%

200
0% H [llJ_IH “ﬂH mall| mall| mall ..HH me
BFS PR CC SSSP| BFS PR CC SSSP G500

Ligra GraphBIG
ESP mIMP mLDSP ©Gretch

Fig. 12. Prefetch coverage.

Coverage

Second, workload such as BFS on Ligra register lower prefetch accuracy with Gretch (65%). This
BFS implementation uses the direction-optimized BFS approach [13] that reduces the number of
neighbors visited for a node based on the graph exploration state. As a result, SP generates prefetch
requests to neighbors that may not be visited, and Gretch generates unused prefetch requests to
properties of these unexplored neighbors resulting in unused prefetches. The BFS implementation
in Graph-500 does not implement this optimization, and hence, SP and Gretch’s prefetch accuracy
is high (81%).

Figure 12 shows the prefetch coverage of the evaluated prefetchers. Gretch achieves an average
prefetch coverage of 56% (up to 86%). SP, IMP, and LDSP achieve an average prefetch coverage of
13%, 13%, and 18%, respectively. Across all workloads and frameworks, Gretch achieves a higher
prefetch coverage compared to other prefetchers as it identifies different DDAs. The Ligra frame-
work maintains several intermediate data structures to activate different run-time optimizations
that improve GA workload performance. These accesses are not captured by SP and Gretch re-
sulting in lower coverage. However, GA workloads executed on GraphBIG and the Graph-500
benchmark do not implement run-time optimizations. As a result, the DDAs identified and op-
timized by Gretch make up the bulk of the off-chip memory accesses resulting in higher cover-
age. IMP’s prefetch coverage is close to SP as it cannot identify the DDAs in Ligra as described
in Section 7.1.1, and the array-indirect DDAs in GraphBIG are to custom data structures. LDSP
achieves higher prefetch coverage (19%) than SP (9%) for the GraphBIG workloads as it identifies
the pointer-based DDAs. However, LDSP’s coverage is lower than that of Gretch as it cannot iden-
tify the array-indirect DDAs in GraphBIG workloads. Recall that Gretch, IMP and LDSP generate
virtual addresses of prefetch requests (Section 4). As a result, these prefetch requests are subjected
to address translation prior to bringing in the data contents of the prefetch request. Gretch, IMP,
and LDSP do not optimize for the memory requests involved in the address translation mechanism
(page walk) resulting in lower prefetch coverage.

Figure 13 shows the increase in off-chip memory accesses due to prefetching for the different
prefetchers compared to no prefetching. Gretch increases off-chip memory accesses by 13% (up to
30%) over no prefetching and 4% (up to 19%) over SP. This increase in off-chip memory accesses
is due to the inaccurate DDA prefetch requests generated by Gretch as described earlier. We find
this increase in off-chip memory accesses due to Gretch acceptable for the performance benefits
it provides as described in Section 7.1.

7.3 Power Consumption

Figure 14 shows the per-core power consumption of GA workloads with Gretch compared to
no prefetching using McPAT [41]. The power consumption encompasses core pipeline activity
and L1-D cache activity. For Gretch, we compute the additional power consumption due to ADT

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

A. M. Kaushik, G. Pekhlmenko and H. Patel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code

Opt'mlzaﬂm&fé?q)l R HA d\‘warezﬁrefetcher for Graph Analytics 18:19
2 12 ge
= [

800

o504

=902

58 0

as‘ BFS PR SSSP| BFS PR CC SSSP| G500 | GM
Ligra GraphBIG

m No prefetching mSP mIMP mLDSP mGretch

Fig. 13. Off-chip memory accesses.

- 1.015 036 0.35 04 __
%.g 1.01 : 03
&5 gl.oos 02"
&3 1 <5
M 20995 0.1%

S 099 0 &~

BFS PR CC SSSP|BFS PR CC SSSP|G500

Ligra GraphBIG
mNo prefetching ®Gretch «ADT+RT power

Fig. 14. Energy consumption.

population and RT management using the access energy estimated in Section 5.4. Gretch increases
average power consumption by 1% on average. This low-power overhead of Gretch is attributed
to the ADT population mechanism that is triggered on receiving communication from the SP
regarding a stride deviation. Hence, the ADT is populated only on stride changes, and remains idle
otherwise resulting in low power consumption. Figure 14 also shows the power consumption of
the ADT and RT management. The RT management contributes to nearly 90% of the total power
dissipation of Gretch’s structures as it is referenced on every L1-D cache miss or prefetch hit.

7.4 Sensitivity Studies

ADT size. Choosing the right ADT size is dependent on (1) number of DDA relationships that
constitute a node’s property access and (2) the number of independent memory accesses that can
be interleaved between a DDA due to available MLP. A large ADT can collect the required access
information of a DDA in the presence of interleaved independent memory accesses. As a result,
a large ADT will collect more access information, and the training logic can infer the necessary
DDAs. However, a large ADT incurs longer recording and training latencies as the training logic
creates more ADT pairs to train on. However, a small ADT collects less access information, and
the training logic trains on fewer ADT pairs resulting in lower recording and training latencies.
However, a small ADT may not be able to collect the necessary access information of a DDA in
the presence of multiple interleaving independent memory accesses. Hence, the performance of
GA workloads on different GA frameworks may have varying requirements on the ADT size.
Figure 15 shows the performance sensitivity of Gretch to different ADT sizes: 4, 8, and 16 entries.
We normalize the performance to the 4-entry ADT. For GA workloads on GraphBIG, 4-entry ADT
does not perform better than 8-entry ADT. This is because GA workloads on GraphBIG comprise
of two levels of DDAs (array-indirect followed by pointer-based), which requires at least 3 ADT
entries to capture the DDAs. As a result, a 4-entry ADT is sufficient to capture the necessary

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

é. M. Kau.shiklI_G. %ekhimtinlé% a'l\Td Héonagel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , pp. 1-25, Nov. . .
P 18500 PP A. M. Kaushik et al.

12 S
203 "Ik
= 0.
§ 0.6
204
©2

0

BFS PR CC SSSP | BFS PR CC SSSP | G500 | GM

Ligra GraphBIG
m4 entry m8entry m16 entry

Fig. 15. Sensitivity to ADT size.

Road & Social network M Kronecker B Uniform

BFS BC PR CC
Fig. 16. Effect of graph topology.

access information to correctly infer the DDAs in GraphBIG workloads. For Ligra and Graph-
500, 4-entry ADT offers similar performance benefits compared to 8-entry ADT. This is because
these workloads feature one DDA type for node property accesses. As a result, a 4-entry ADT has
enough entries to accommodate the DDAs and any interleaved independent memory accesses.
16-entry ADT captures all the DDAs across GA workloads as there are enough entries However,
the 16-entry ADT incurs higher training latency overhead as more ADT pairs are constructed and
trained upon resulting in 3% performance slowdown compared to the 8-entry ADT.

Graph topology. Graph topology defines the connectivity of nodes in a graph. Figure 16 shows
the performance of Gretch on the graph topologies described in Table 1(b). For this sensitivity
study, we use the Ligra framework as it provides a simple interface to load different graph inputs.>

We observe that for graphs following power law degree distribution (Kronecker and social net-
work), Gretch shows better performance benefits over SP. For social network graphs (LDBC),
Gretch provides an average speedup of 37% over SP, and a maximum of 2.23X speedup. For uni-
form graphs, Gretch provides an average speedup of 41% over SP, and a maximum of 73% over SP.
However, for road networks, Gretch does not provide any performance benefits over SP. This is
because the road network consists of nodes with low number of neighbors (average node degree is
2.4). Hence, exploring the node’s neighbors does not build enough confidence in the SP to generate
strided prefetch requests, and cannot detect stride deviations for the memory instruction respon-
sible for exploring a node’s neighbors. As a consequence, Gretch does not initiate ADT population
as it does not receive any communication from SP resulting in no DDA prefetch requests.

Graph pre-processing. Graph pre-processing techniques change the graph layout of an
input graph to improve the cache locality of node property accesses [11]. We apply a recent

3We cannot represent the above graphs in GraphBIG due to memory limitations on our simulated system. However, we
use scaled down versions of the graphs that fit in memory for GraphBIG, and note similar observations.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

A. M. Kaushik, G. Pekhimenko, and H. Patel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code

Optimizatiop Fat W R Hard\wafe Prefetcher for Graph Analytics 18:21
2 1.70
1.57 -
o 40
Z 1.5 1.17 1.26! 105 1.181.27
o 1
8-40 5
>o0.
0
SP Gretch SP Gretch
Original Pre-processed

mBFS mPR =CC =SSSP
Fig. 17. Sensitivity to graph pre-processing.

pre-processing technique, HubSort [11], on the Pokec social network graph, and evaluate Gretch’s
performance on this pre-processed graph. HubSort improves the spatial locality primarily for
large degree nodes in power law graphs [11]. Figure 17 shows Gretch’s performance benefits
normalized to the execution time with SP enabled. Benchmarks such as BFS and SSSP that explore
the connections of high degree nodes benefit from pre-processing. These benchmarks also benefit
from Gretch’s prefetching as pre-processing does not completely eliminate DDAs. However,
Gretch’s performance benefits are lower on pre-processed graphs for these workloads (4% for BFS
and 18% for SSSP) compared to the original graphs that are not subjected to any pre-processing
(16% for BFS and 26% for SSSP). The PR and CC workloads on pre-processed graphs equally benefit
from Gretch (69% for PR and 26% for SSSP) compared to those obtained on the original graph. This
is because PR and CC operate on all nodes of the graph, and hence, there is an abundance of DDAs.

8 RELATED WORK

We discuss prior works in data prefetching techniques and GA-specific on-chip accelerators [4, 12,
53, 67]. While there is a large volume of prior research in prefetching techniques such as software
prefetching [5, 34, 44, 52, 62], and hardware prefetching [4, 6, 10, 21, 22, 24, 31-33, 49, 56, 58, 59,
61, 63, 66], we restrict our discussion to prefetching techniques that improve DDAs [6, 22, 24, 61,
66].

DDAs prefetchers. Roth et al. [61] proposed a hardware prefetch mechanism for identifying
pointer-based accesses in linked data structures (LDSP). Linked data structures consists of pointers
that represent links between objects, and exploration of LDS uses these pointers. The design in
Reference [61] recorded access histories, and identified pointer-based accesses by comparing the
referenced addresses with the data recorded from prior memory instructions. Cooksey et al. [22]
proposed the content-directed prefetcher (CDP) that identified pointers present in the data. CDP
identified pointers by comparing the higher order bits of the data with the address that brought
in the data. For array indirect accesses A[B[i]], Yu et al. [66] proposed the indirect memory
prefetcher (IMP). IMP used the value stored in B[i] to compute different base addresses of A
using sizes of commonly observed array data types. The data types considered by IMP were
restricted to reduce the hardware overhead [66]. Peled et al. [58] proposed a compiler assisted
hardware prefetcher design that used reinforcement learning to identify different access patterns,
which includes DDAs. However, their approach required feedback from performance counters,
and compiler hints to identify memory access patterns, and is expensive in terms of hardware
overhead. Recently, Cavus et al. [20] proposed a hardware-software approach to identify and
prefetch array-indirect and pointer-based data-dependent accesses. Their approach modified the
application to add instructions to communicate data structure knowledge, and this knowledge
is communicated to the prefetcher, which identified data-dependent accesses. On the contrary,

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

é. M. I_(au_shiklI_G. Fc’)ekhim(inlé% a'l\lnd Héonagel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , pp. 1-25, Nov. . .
P 1§550) pe A. M. Kaushik et al.

our approach does not modify the application, and identifies data-dependent accesses in GA
workloads using a purely hardware approach.

GA-specific on-chip accelerators. Ainsworth and Jones [4] proposed a GA-specific hard-
ware prefetcher that operated on CSR graph representation. This prefetcher required application
changes to convey information about the address ranges of the data structures used in the graph
representation to accurately identify and optimize the array-indirect DDAs. Zhang et al. [67] re-
cently proposed a programmable GA-specific accelerator, Minnow, that leveraged the information
in GA worklist data structures that store nodes ready to be explored to generate prefetch candi-
dates. Mukkara et al. [53] proposed an on-chip accelerator, HATS, that changed the schedule of
nodes explored based on the cache occupancy of the graph. The schedule prioritizes exploration
of nodes that have more neighbors currently in the cache hierarchy. Basak et al. [12] proposed a
GA-specific prefetcher, DROPLET, that was located along with the memory controller, and issued
DDA prefetch requests. Minnow, HATS and DROPLET were designed for CSR representations,
and required communication from the framework regarding information about the base address
and offset size to generate DDA prefetch requests [12, 53, 67]. Gretch, however, works for differ-
ent graph representations including CSR, and does not require any communication from the GA
framework to identify and generate prefetch requests.

We note that there are several hardware accelerators for GA [3, 9, 29, 57]. Gretch is orthogonal to
these works, and can be used in these accelerators as DDAs still feature even for these accelerators
[29].

9 CONCLUSION

We present Gretch, a hardware prefetcher for GA that identifies different DDAs. There are two key
design novelties of Gretch. First, Gretch identifies different DDAs using a unified set of hardware
structures. This allows Gretch to deliver performance benefits across different graph represen-
tations. Second, Gretch uses the interaction of memory accesses issued by GA workloads and
a conventional stride prefetcher to accurately identify DDAs in the presence of out-of-order in-
struction scheduling. As a result, Gretch does not require any hardware-software communication
from the framework to guide its operation. Our evaluation shows that Gretch provides an average
performance improvement of 37% over no prefetching, 25% over SP, and 22% over the best DDA-
specific prefetcher across different GA workloads and frameworks with only 1% increase in power
consumption compared to no prefetching.

REFERENCES

[1] Neo4j [n.d.]. Neo4j graph database. Retrieved from http://neo4;j.com/.

[2] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. 2015. CRONO: A benchmark suite for multithreaded graph algorithms
executing on futuristic multicores. In Proceedings of the IEEE International Symposium on Workload Characterization
(IISWC’15). IEEE, 44-55.

[3] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. A scalable processing-in-memory
accelerator for parallel graph processing. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture (ISCA’15). ACM, 105-117.

[4] Sam Ainsworth and Timothy M. Jones. 2016. Graph prefetching using data structure knowledge. In Proceedings of the
International Conference on Supercomputing (ICS’16). ACM, 1-11.

[5] S.Ainsworthand T. M. Jones. 2017. Software prefetching for indirect memory accesses. In Proceedings of the IEEE/ACM
International Symposium on Code Generation and Optimization (CGO’17). IEEE/ACM, 305-217.

[6] Sam Ainsworth and Timothy M. Jones. 2018. An event-triggered programmable prefetcher for irregular workloads.
InProceedings of the 23rd International Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS’18). ACM, 578-592.

[7] Ayaz Akram and Lina Sawalha. 2019. Validation of the gem5 simulator for x86 architectures. In Proceedings of the
Conference on IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS’19). IEEE, 53-58.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

http://neo4j.com/

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

A. M. Kaushik, G. Pekhimenko, and H. Patel, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code

Optimizatiop Fat W R Hard\wafe Prefetcher for Graph Analytics 18:23

[8] L. M. AlBarakat, P. V. Gratz, and D. A. Jimenez. 2018. MTB-fetch: Multithreading aware hardware prefetching for
chip multiprocessors. IEEE Comput. Architect. Lett. (2018), 175-178.

[9] M.]J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L. Willke, and P. Dubey. 2016. GraphPad: Optimized
graph primitives for parallel and distributed platforms. In Proceedings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS’16). IEEE, 313-322.

[10] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad. 2018. Domino temporal data prefetcher. In Proceedings of
the IEEE International Symposium on High Performance Computer Architecture (HPCA’18). IEEE, 131-142.

[11] V. Balaji and B. Lucia. 2018. When is graph reordering an optimization? Studying the effect of lightweight graph
reordering across applications and input graphs. In Proceedings of the IEEE International Symposium on Workload
Characterization (ISWC’18). IEEE, 203-214.

[12] AbantiBasak, Shuangchen Li, Xing Hu, Sang Min Oh, Xinfeng Xie, Li Zhao, Xiaowei Jiang, and Yuan Xie. 2019. Analy-
sis and optimization of the memory hierarchy for graph processing workloads. In Proceedings of the IEEE International
Symposium on High Performance Computer Architecture (HPCA’19). IEEE, 373-386.

[13] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing breadth-first search. In Proceed-
ings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC’12). IEEE,
1-10.

[14] Scott Beamer, Krste Asanovic, and David Patterson. 2015. Locality exists in graph processing: Workload character-
ization on an ivy bridge server. In Proceedings of the IEEE International Symposium on Workload Characterization
(IISWC’15). IEEE, 56-65.

[15] Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP benchmark suite. Retrieved from https://arXiv:
1508.03619.

[16] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,
Derek R. Hower, Tushar Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Comput. Ar-
chitect. News 39, 2 (2011), 1-7.

[17] Peter Boncz. 2013. LDBC: Benchmarks for graph and RDF data management. In Proceedings of the 17th International
Database Engineering and Applications Symposium. ACM, 1-2.

[18] Anastasiia Butko, Rafael Garibotti, Luciano Ost, and Gilles Sassatelli. 2012. Accuracy evaluation of gem5 simulator
system. In Proceedings of the International Workshop on Reconfigurable and Communication-centric Systems-on-chip
(ReCoSoC’12). TEEE, 1-7.

[19] Mustafa Canim and Yuan-Chi Chang. 2013. System G data store: Big, rich graph data analytics in the cloud. In Pro-
ceedings of the IEEE International Conference on Cloud Engineering (IC2E’13). IEEE, 328-337.

[20] Mustafa Cavus, Resit Sendag, and Joshua J. Yi. 2020. Informed prefetching for indirect memory accesses. ACM Trans.
Architect. Code Optimiz. (2020), 1-29.

[21] Tien-Fu Chen and Jean-Loup Baer. 1995. Effective hardware-based data prefetching for high-performance processors.
IEEE Trans. Comput. 44, 5 (1995), 609-623.

[22] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. 2002. A stateless, content-directed data prefetching mecha-
nism. ACM SIGPLAN Notices 37, 10, 279-290.

[23] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He,
Mike Lambert, Blake Livingston, et al. 2010. The YouTube video recommendation system. In Proceedings of the 4th
ACM Conference on Recommender Systems. 293-296.

[24] Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. 2009. Techniques for bandwidth-efficient prefetching of linked data
structures in hybrid prefetching systems. In Proceedings of the IEEE 15th International Symposium on High Performance
Computer Architecture (HPCA’09). IEEE, 7-17.

[25] D.Ediger,R.McColl, J.Riedy, and D. A. Bader. 2012. STINGER: High-performance data structure for streaming graphs.
In Proceedings of the IEEE Conference on High Performance Extreme Computing. IEEE, 1-5.

[26] Assaf Eisenman, Lucy Cherkasova, Guilherme Magalhaes, Qiong Cai, and Sachin Katti. 2016. Parallel graph process-
ing on modern multi-core servers: New findings and remaining challenges. In Proceedings of the IEEE 24th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS’16).
IEEE, 49-58.

[27] Facebook. 2013. Introducing Graph Search Beta. Retrieved from https://newsroom.fb.com/news/2013/01/introducing-
graph-search-beta/.

[28] Anthony Gutierrez, Joseph Pusdesris, Ronald G. Dreslinski, Trevor Mudge, Chander Sudanthi, Christopher D.
Emmons, Mitchell Hayenga, and Nigel Paver. 2014. Sources of error in full-system simulation. In Proceedings of the
International Symposium on Performance Analysis of Systems and Software (ISPASS’14). IEEE, 13-22.

[29] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret Martonosi. 2016. Graphicionado: A
high-performance and energy-efficient accelerator for graph analytics. In Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’16). IEEE, 1-13.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

https://arXiv:1508.03619
https://arXiv:1508.03619
https://newsroom.fb.com/news/2013/01/introducing-graph-search-beta/.
https://newsroom.fb.com/news/2013/01/introducing-graph-search-beta/.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

é. M. I_(au_shiklI_G. Fc’)ekhimtinlé% a'l\lnd HéoP;(;el, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , pp. 1-25, Nov. . .
P 18592 PP A. M. Kaushik et al.

[30] Intel. 2016. Intel 64 and IA-32 architectures optimization reference manual (Section 12.1. 1), 2014. Retrieved from
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-
manual.pdf.

[31] Akanksha Jain and Calvin Lin. 2013. Linearizing irregular memory accesses for improved correlated prefetching. In
Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’13). 247-259.

[32] Victor Jiménez, Roberto Gioiosa, Francisco J. Cazorla, Alper Buyuktosunoglu, Pradip Bose, and Francis P. O’Connell.
2012. Making data prefetch smarter: Adaptive prefetching on POWER?. In Proceedings of the 21st International Con-
ference on Parallel Architectures and Compilation Techniques (PACT’12). ACM, 137-146.

[33] Norman P. Jouppi. 1990. Improving direct-mapped cache performance by the addition of a small fully-associative
cache and prefetch buffers. ACM SIGARCH Comput. Architect. News 18, 2SI (1990), 364-373.

[34] Magnus Karlsson, Fredrik Dahlgren, and Per Stenstrom. 2000. A prefetching technique for irregular accesses to
linked data structures. In Proceedings of the 6th International Symposium on High-Performance Computer Architec-
ture (HPCA’00). IEEE, 206-217.

[35] Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A. L. Narasimha Reddy, Chris Wilkerson, and Zeshan Chishti. 2016.
Path confidence based lookahead prefetching. In Proceedings of the 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’16). IEEE, 1-12.

[36] Jinchun Kim, Elvira Teran, Paul V. Gratz, Daniel A. Jiménez, Seth H. Pugsley, and Chris Wilkerson. 2017. Kill the
program counter: Reconstructing program behavior in the processor cache hierarchy. ACM SIGPLAN Notices 52, 4
(2017), 737-749.

[37] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and L. Paul Chew. 2007. Opti-
mistic parallelism requires abstractions. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’07). ACM, 211-222.

[38] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is Twitter, a social network or a news
media? In Proceedings of the 19th International Conference on World Wide Web. ACM, 591-600.

[39] Andrew Lenharth, Donald Nguyen, and Keshav Pingali. 2016. Parallel graph analytics. Commun. ACM 59, 5 (2016),
78-87.

[40] Jure Leskovec and Rok Sosi¢. 2016. SNAP: A General-Purpose Network Analysis and Graph-Mining Library. ACM
Trans. Intell. Syst. Technol. 8, 1, Article 1 (2016), 20 pages. https://doi.org/10.1145/2898361

[41] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. McPAT:
An integrated power, area, and timing modeling framework for multicore and manycore architectures. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’09). ACM, 469-480.

[42] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P. Jouppi. 2011. CACTI-P: Architecture-level mod-
eling for SRAM-based structures with advanced leakage reduction techniques. In Proceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD’11). IEEE, 694-701.

[43] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon. com recommendations: Item-to-item collaborative filter-
ing. IEEE Internet Comput. 7, 1 (2003), 76—-80.

[44] Chi-Keung Luk. 2001. Tolerating memory latency through software-controlled pre-execution in simultaneous multi-
threading processors. In Proceedings 28th Annual International Symposium on Computer Architecture (ISCA’01). IEEE,
40-51.

[45] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry. 2007. Challenges in parallel graph
processing. Parallel Process. Lett. 17, 01 (2007), 5-20.

[46] J. Luo, H. Cheng, L Lin, and D. Chang. 2019. TAP: Reducing the energy of asymmetric hybrid last-level cache via
thrashing aware placement and migration. IEEE Trans. Comput. (2019), 1704-1719.

[47] P. M. Yaghini, G. Michelogiannakis, and P. V. Gratz. 2019. SpecLock: Speculative lock forwarding. In Proceedings of
the International Conference on Computer Design (ICCD’19). IEEE, 273-282.

[48] Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund Clarke, and Jeannette Wing. 2006. Ranking attack
graphs. In Proceedings of the International Workshop on Recent Advances in Intrusion Detection. Springer, 127-144.

[49] Pierre Michaud. 2016. Best-offset hardware prefetching. In Proceedings of the IEEE International Symposium on High
Performance Computer Architecture (HPCA’16). IEEE, 469-480.

[50] G. Michelogiannakis and J. Shalf. 2017. Last level collective hardware prefetching for data-parallel applications. In
Proceedings of the International Conference on High Performance Computing (HiPC’17). IEEE, 72-83.

[51] Rada Mihalcea and Dragomir Radev. 2011. Graph-based Natural Language Processing and Information Retrieval. Cam-
bridge University Press.

[52] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. 1992. Design and evaluation of a compiler algorithm for prefetch-
ing. ACM Sigplan Notices 27, 9, 62-73.

[53] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and Daniel Sanchez. 2018. Exploiting locality
in graph analytics through hardware-accelerated traversal scheduling. In Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’18). IEEE, 1-14.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf.
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf.
https://doi.org/10.1145/2898361

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

é. M. I_(au_shikll_g. Pekhimenlé%, and HéoPateI, “Gretch: A Hardware Prefetcher for Graph Analytics,” ACM Transactions on Architecture and Code
timizatio , PR- 1725, Nov.) .
P Yotk "R HArdWaf&Prefetcher for Graph Analytics 18:25

[54] Richard C. Murphy, Kyle B. Wheeler, Brian W. Barrett, and James A. Ang. 2010. Introducing the graph 500. Cray Users
Group (CUG).

[55] Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-Yung Lin. 2015. GraphBIG: Understanding graph
computing in the context of industrial solutions. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’15). IEEE, 1-12.

[56] Kyle J. Nesbit and James E. Smith. 2004. Data cache prefetching using a global history buffer. In Proceedings of the10th
International Symposium on High Performance Computer Architecture (HPCA’04). IEEE, 96-96.

[57] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth, Steven Burns, and Ozcan Ozturk.
2016. Energy efficient architecture for graph analytics accelerators. ACM SIGARCH Comput. Architect. News 44, 3
(2016), 166-177.

[58] Leeor Peled, Shie Mannor, Uri Weiser, and Yoav Etsion. 2015. Semantic locality and context-based prefetching using
reinforcement learning. In Proceedings of the ACM/IEEE 42nd Annual International Symposium on Computer Architec-
ture (ISCA’15). IEEE, 285-297.

[59] Seth H. Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang, Robert L. Scott, Aamer Jaleel, Shih-Lien Lu,
Kingsum Chow, and Rajeev Balasubramonian. 2014. Sandbox prefetching: Safe run-time evaluation of aggressive
prefetchers. In Proceedings of the IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA’14). IEEE, 626-637.

[60] S.Ravi. 2016. Graph-powered Machine Learning at Google.

[61] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. 1998. Dependence based prefetching for linked data structures.
In Proceedings of the 8th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’98). 115-126.

[62] A.Roth and G. S. Sohi. 1999. Effective jump-pointer prefetching for linked data structures. In Proceedings of the 26th
Annual International Symposium on Computer Architecture (ISCA’99). ACM, 111-121.

[63] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilkerson, Seth H. Pugsley, and Zeshan Chishti.
2015. Efficiently prefetching complex address patterns. In Proceedings of the 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’15). IEEE, 141-152.

[64] Julian Shun and Guy E. Blelloch. 2013. Ligra: A lightweight graph processing framework for shared memory. In
Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, 135-146.

[65] Stuart Staniford-Chen, Steven Cheung, Richard Crawford, Mark Dilger, Jeremy Frank, James Hoagland, Karl Levitt,
Christopher Wee, Raymond Yip, and Dan Zerkle. 1996. GrIDS-a graph based intrusion detection system for large
networks. In Proceedings of the 19th National Information Systems Security Conference, Vol. 1. 361-370.

[66] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, and Srinivas Devadas. 2015. IMP: Indirect memory prefetcher.
In Proceedings of the 48th International Symposium on Microarchitecture (MICRO’15). ACM, 178-190.

[67] Dan Zhang, Xiaoyu Ma, Michael Thomson, and Derek Chiou. 2018. Minnow: Lightweight offload engines for worklist
management and worklist-directed prefetching. ACM SIGPLAN Notices 53, 2 (2018), 593-607.

Received January 2020; revised November 2020; accepted November 2020

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 2, Article 18. Publication date: February 2021.

