
CARP: A Data Communication Mechanism for
Multi-Core Mixed-Criticality Systems

Anirudh Mohan Kaushik, Paulos Tegegn, Zhuanhao Wu, and Hiren Patel
Department of Electrical and Computer Engineering

University of Waterloo
Ontario, Canada

{anirudh.m.kaushik, ptegegn, zhuanhao.wu, hiren.patel}@uwaterloo.ca

Abstract—We present CARP, a predictable and high-
performance data communication mechanism for multi-core
mixed-criticality systems (MCS). CARP is realized as a hardware
cache coherence protocol that enables communication between
critical and non-critical tasks while ensuring that non-critical
tasks do not interfere with the safety requirements of critical
tasks. The key novelty of CARP is that it is criticality-aware,
and hence, handles communication patterns between critical
and non-critical tasks appropriately. We derive the analytical
worst-case latency bounds for requests using CARP and note
that the observed per-request latencies are within the analytical
worst-case latency bounds. We compare CARP against prior
data communication mechanisms using synthetic and SPLASH-
2 benchmarks. Our evaluation shows that CARP improves
the average-case performance of MCS compared to prior data
communication mechanisms, while maintaining the safety re-
quirements of critical tasks.

I. INTRODUCTION

Mixed-criticality systems (MCS) consist of tasks with vary-
ing safety requirements [1]–[4]. These tasks are typically cate-
gorized into different criticality levels based on the severity of
consequences of any deviation in their safety requirements [5].
The avionic and automotive domains have adopted several
principles behind MCS as seen in standards such as DO-178C,
ISO-26262, and AUTOSAR [5]. These domains continue to
notice an increase in demands for complex and integrated
functionalities whose implementations require interactions and
communication between these complex functionalities [6], [7].
There is considerable interest in the community in using multi-
core platforms to deploy such functionalities [8]–[12] for
resource consolidation and cost reductions.

There are several prior research efforts in deploying MCS
on multi-cores, but many of them assume that tasks do not
communicate with each other [13]–[20]. This assumption is
not representative of practical systems. For example, Hamann
et al. [7] described that communication is prevalent in automo-
tive embedded applications deployed on multi-cores. Hence,
it is not surprising that recent research efforts have attempted
to support communication between tasks in MCS [6], [21].
We are encouraged by this trend to explore predictable data
communication mechanisms for MCS.

We observe that prior efforts on designing data communi-
cation mechanisms for MCS have the following side-effects:
(1) they underutilize the performance opportunities available
on multi-cores, and (2) they disallow communication between

critical and non-critical tasks [6]. For the first side-effect, con-
sider Chisolm et al.’s [6] work, which allows communication
between critical tasks, but these tasks must be executed on the
same core of a multi-core platform. Using this approach, if all
tasks were to communicate with a common task, then they
would all have to be deployed on the same core. This would
result in underutilization of the multi-core platform (effectively
single-core utilization). We find that this side-effect is a
result of certain guidelines put forth by the standards or
lack thereof. Therefore, any data communication mechanism
that complies with the standards may also suffer from the
same side-effect. Consider the AUTOSAR standard that allows
data communication between critical tasks as long as they
reside in the same memory partition (§ 2.1.2.2 and § 2.1.2.4)
[22]. However, AUTOSAR also mandates that tasks sharing a
memory partition must be executed on the same core (§ 2.7)
[23], which restricts the utilization of hardware parallelism
offered by multi-cores.

For the second side-effect, to the best of our knowledge,
there is limited guidance in the standards on the require-
ments of communication between critical and non-critical
tasks. Consequently, the general approach taken has been to
disallow communication between such tasks. However, we find
that practical deployments can benefit from communication
between non-critical and critical tasks. Examples include the
use of non-critical tasks for run-time monitoring where tasks
monitor the execution of critical tasks for data correctness
[24]–[26], and quality management tasks [27] that improve the
overall functioning and responsiveness of the MCS. Presently,
one way to incorporate such non-critical tasks in MCS is to
elevate them to be critical tasks, which would most likely
impact the safety-critical requirements of critical tasks. Note
that ISO-26262 allows non-critical tasks to co-exist with
critical tasks in the same memory partition as long as the safety
requirements of critical tasks are not violated (§ 2.7) [27]. To
collect on the potential benefits of incorporating non-critical
tasks, communication must be allowed with critical tasks, but it
must be enabled carefully to ensure predictability, and without
affecting the safety-critical requirements of critical tasks.

In this work, we develop a data communication mecha-
nism for MCS that (1) leverages performance opportunities
offered by multi-core platforms, and (2) allows communication
between critical and non-critical tasks without violating the

safety-critical requirements of critical tasks. In particular, we
focus on the safety requirements that deal with the temporal
properties (worst-case latency bounds) of critical tasks. To
accomplish this, we cautiously and excitedly step beyond the
constraints placed by the standards with the hope of fostering
discussions on proposed extensions for future evolution of the
standards. To motivate benefits of such proposed extensions,
we design CARP, a data communication mechanism based on
hardware cache coherence that uses these proposed extensions
to enable communication between critical and non-critical
tasks, and deploys them across multiple cores. A key novelty
of CARP is that it dynamically handles the communication
between tasks based on their criticality levels. As a result,
CARP is a criticality-aware data communication mechanism.
This criticality awareness property allows critical and non-
critical tasks to communicate such that the temporal properties
of critical tasks are not affected by non-critical tasks. Prior
works that facilitate data communication between critical and
non-critical tasks such as [28] do not dynamically adapt the
communication, and hence, introduce some timing interference
in the temporal bounds of critical tasks. From our evaluation,
CARP improves average-case performance by 30% over prior
state-of-the-art data communication techniques proposed for
MCS and real-time systems.
Our main contributions in this work are as follows.
• We propose CARP, a criticality-aware cache coherence

protocol that enables high performance data communica-
tion between critical and non-critical tasks while ensuring
the non-critical tasks do not interfere with the worst-case
latency bounds (WCL) of critical tasks.

• We present a latency analysis for CARP to derive the
WCL bounds on data communication.

• We compare CARP against prior approaches for en-
abling data communication using synthetic and SPLASH-
2 workloads [29]. We show that the observed data com-
munication latencies are within the WCL bounds, and
CARP offers improved average-case performance over
prior approaches for predictable data communication.

• We open-source the implementation of CARP at
https://git.uwaterloo.ca/caesr-pub/mcs-carp to allow the
research community to explore and build new data com-
munication mechanisms for MCS using hardware cache
coherence.

II. SYSTEM MODEL

We denote a task set with T tasks in the system as
Γ = {τil : l ∈ {A,B,C,D,E}, i ∈ [0,T − 1]} where every
task has a criticality level l [5]. Our MCS model follows
standards in avionics and automotive domains that classify
tasks into different criticality levels based on their safety
requirements [22], [27], [30], [31]. A task may have one of
the five criticality levels: level A tasks are the most critical
whose failure may result in fatalities through level E that are
not critical and experience system performance impacts on a
failure. We collectively refer level A-D tasks as critical tasks
and level E tasks as non-critical tasks. Levels A and B tasks

mandate tight WCL bounds with level A tasks having more
stringent requirements than B. Tasks at levels C and D are soft
real-time tasks that also need WCL bounds; however, these
bounds are less stringent than levels A and B tasks. Level
E tasks do not have any WCL bounds. Such a MCS model
has been used in prior research [6], [17], [20], [32] 1.

Our real-time multi-core platform has N cores C =
{c0, c1, ..., cN−1}. A task mapped onto a core inherits the
task’s criticality level. For example, τil mapped onto core
cj results in clj indicating that a task of l criticality level is
executing on cj . Note that we do not constrain a core to run a
single task, and multiple tasks with different criticality levels
can be executed on the same core. We require the core to
identify the criticality level of the task currently executing
on it. We describe one architectural extension to achieve this
identification in Section VI. For the remainder of the text, we
use the term core to refer to the task executing on the core.
We denote Cl = {cmi : ∀cmi ,m = l} as the set of cores
running tasks of criticality l. We assume that cores are in-
order and allow for at most one outstanding memory request.
Our evaluation empirically validates the analysis with this
assumption. However, the proposed solution is independent
of the core architecture, and works with out-of-order cores.
The cores have a private memory hierarchy with caches and
shared memory. The caches hold a subset of data stored in
the shared memory, and the shared memory holds all the data
needed by tasks running on the multi-core platform.

Cores communicate with the shared memory through a
shared bus as the interconnect. A shared bus deploys an
arbitration policy that manages the communication over the
bus. The arbitration policies place constraints on when cores
and memories are granted access to the shared bus for
communication, and/or the amount of bus bandwidth made
available for cores and memories. We deploy our proposed
data communication mechanism on variants of time-division
multiplexing (TDM) and round-robin (RR) arbitration policies.
These arbitration policies have received considerable attention
in the real-time community [14], [15], [33]–[36], and have
been implemented in real-time platforms [37], [38].

III. MOTIVATION

We list two key guidelines defined in the AUTOSAR
standard that govern the design of data communication mech-
anisms. The first guideline allows tasks of different criticality
levels to reside in the same memory partition (§ 2.1.2.2 and §
2.1.2.4) [22]. A consequence of this guideline is that tasks can
communicate through shared data [6], [7]. Therefore, tasks of
any criticality level can communicate with each other through
shared data resident on the same memory partition. The
second guideline states that tasks sharing a memory partition
must execute on the same core (§ 2.7) [23]. This guideline
forces tasks communicating via shared data to reside on the
same core. There are two key limitations that these guidelines

1We are aware that ISO-26262 and AUTOSAR standards define level D as
the highest criticality level and level A as the lowest criticality level.

TABLE I: AUTOSAR guidelines satisfied and extended by CARP.

CARP feature Standard
guideline Relationship

Multiple tasks share a memory partition § 2.1.2 [22] Satisfies
Tasks of different criticality levels share
a memory partition § 2.1.2 [22] Satisfies

Critical and non-critical tasks share a
memory partition § 2.7 [27] Satisfies

Data communication between non-
critical and critical tasks None Extends

Tasks sharing a memory partition are
deployed across cores § 2.7 [23] Extends

impose for MCS deployments on modern and future multi-
core platforms. (1) Limiting the number of cores that can be
used based on data communication patterns of the application.
As multi-cores continue to have large core counts, there
would be considerable underutilization of hardware resources
in deployments where tasks communicate. (2) Deploying
tasks onto processing elements best suited for their execution
is limited. Heterogeneous multi-core platforms with various
accelerators [12] match the needs of modern applications, and
has received recent attention for MCS [39], [40]. For example,
certain machine-learning or vehicle tracking functionality may
use a graphics-processing unit, and other computations may
use real-time cores. However, if these functionalities commu-
nicate, then such heterogeneous platforms cannot be used since
the tasks must reside on the same core.

In an effort to address these limitations, we present two
possible extensions for consideration. The first extension al-
lows communicating tasks to be deployed across multiple
cores provided the safety-critical requirements of critical tasks
are not violated. Recently, Hassan et al. [41] proposed an
approach to allow communicating tasks of the same criticality
level to execute on different cores. They showed significant
performance improvements over deploying communicating
tasks onto the same core while preserving safety-critical
requirements. Our work distinguishes itself from [41] in that
we focus on data communication across tasks of different
criticality levels deployed across multiple cores.

The second extension allows communication between crit-
ical and non-critical tasks such that non-critical tasks do not
violate the safety-critical requirements of critical tasks. To the
best of our efforts, we did not find any guidance in AUTOSAR
for data communication between non-critical and critical tasks.
Hence, the only way to allow such tasks to communicate is to
elevate the criticality level of non-critical tasks. However, the
introduction of newly elevated critical tasks will interfere with
the temporal requirements of existing critical tasks. Hence,
an alternative mechanism that allows for such communication
without impacting the temporal requirements of critical tasks is
desirable. Note that ISO-26262 does allow non-critical tasks
to co-exist with critical tasks in the same memory partition
as long as non-critical cores do not violate the safety require-
ments of critical tasks (§ 2.7) [27], but the general approach to
such communication has been to disallow it. In this work, we
disallow level E tasks to potentially corrupt memory contents

by restricting them to only read communicated data.
Table I summarizes the relationship between CARP’s fea-

tures and the guidelines described in the AUTOSAR and
ISO-26262 standards. This relationship falls into 2 categories:
(1) Satisfies: CARP’s features satisfy the guidelines in the
standards and (2) Extends: CARP’s features require extensions
to the standards. We view CARP as a step towards identifying
the benefits of extending the guidelines on data communication
in order to develop high performance yet predictable data
communication mechanisms for multi-core MCS.

IV. BACKGROUND

A. Hardware cache coherence

Hardware cache coherence is a hardware mechanism that
provides all cores in a multi-core platform access to data that
may be cached in their private caches [42]. A cache coherence
protocol prescribes a set of rules to maintain a coherent view
of data by ensuring that a core reads the most up-to-date
version of the requested data. It further allows multiple cores to
simultaneously have copies of data with the up-to-date value in
their private caches. Each cache controller (CC) implements
the cache coherence protocol, which consists of states that
represent read and write permissions of data, and transitions
between states that are triggered based on the cores’ data
communication activity. Based on the number of cores in the
multi-core platform, communication between cores may occur
over a snoopy shared bus or a NoC [42]. For this work, we
limit our discussion to communication using a snoopy shared
bus implementation that is appropriate for multi-core platforms
with eight cores or less [8], [9], [11], [43].

Data communication begins when a core generates a mem-
ory request (read/write). This memory request first looks up
the address in the core’s private cache(s). If the address is
found (cache hit), the private cache(s) returns the correspond-
ing data, and the data communication is marked as completed.
If the address is not found (cache miss), the cache controller
issues a coherence message based on the type of memory
access (read/write), and broadcasts on the snooping bus to
all cores and the shared memory connected to the snooping
bus. A coherence message is said to be ordered on the bus
when all cores and the shared memory observe the broadcasted
message on the bus. Data responses for data communication
on the same data by different cores are returned based on the
broadcasted order. The granularity of the data transferred is
of cache line size, which is the unit of data transfer in the
memory hierarchy.

A cache coherence protocol has stable and transient states.
Stable states denote read or write permissions of a cache line,
and transient states are intermediate states traversed while
transitioning between stable states. Figure 1 shows the stable
states of the Modified-Shared-Invalid (MSI) cache coherence
protocol, which is a base protocol upon which modern co-
herence protocols such as MESIF and MOESI [42] are built.
Note that Figure 1 does not show the transient states and its
transitions for brevity. A cache line in Invalid (I) indicates
invalid data that cannot be used. A cache line in Modified

M SIWrite

Write

Read
Write

Write Write

Read
Read

Core’s memory activity Remote core’s memory activity

Fig. 1: Modified-Shared-Invalid (MSI) coherence protocol.

(M) indicates that the core modified the data in the cache line;
hence, the core that made the modification owns the cache line,
and has the most up-to-date value of the data. We refer to cores
that own different cache lines as owners, and requesting cores
that are not owners of a cache line as remote cores. There can
be only one owner for a cache line. A cache line in Shared (S)
indicates a cache line that was read, but not modified. Multiple
cores may have the same cache line in the S state. This allows
read hits in their respective private caches. This constraint of
one owner for a cache line or multiple cores sharing a cache
line is referred to as the single writer multiple reader (SWMR)
invariant [42]. A core that has a private copy of data in M
state must write-back the updated value to the shared memory
on observing remote cores’ memory activity on the same data.

Transient states are necessary to allow multiple cores to
interleave their requests on the snoopy bus. Consequently, the
snoopy bus implementation is non-atomic, and the primary
reason for this is to offer improved performance [42], [44].
For such bus implementations, transient states capture state
change activities from other cores to the same shared data.
A core’s request can experience intervening requests when
waiting for its coherence message to be ordered on the bus,
or when the core is waiting for the data after its request was
ordered on the bus. Transitions between states are triggered
based on the coherence messages broadcasted on the snooping
bus. These coherence messages vary based on the memory
requests generated by a core.

B. Predictable hardware cache coherence

Hassan et al. [41] proposed PMSI that provided the perfor-
mance benefits of hardware cache coherence protocols while
delivering predictability for multi-core real-time systems [41].
Our data communication mechanism is built using cache
coherence, and utilizes the design guidelines and architectural
extensions proposed in [41], which we briefly describe.

There are two architectural extensions that work with the
PMSI cache coherence protocol. The first architectural exten-
sion is the pending request lookup table (PR LUT) at the
shared memory. The PR LUT records pending requests to
cache lines. Multiple pending requests to the same cache line
are maintained in the PR LUT in broadcasted order. Data
responses from the shared memory to pending requests to the
same cache line are sent in broadcasted order. As a result, the
PR LUT ensures predictable data accesses from the shared
memory. The second architectural extension is in each core’s
private cache controller that comprises of two FIFO buffers:
pending request (PR) buffer, and the pending write-back
(PWB) buffer. The PR buffer holds requests for coherence

Blocking latency due to level E task

A B C A B C A B C A B

Worst-case latency

cA0
cB1
cC2
cE3

Blocking latency due to level A-D task

Latency due to arbitration

Data latency

1 2 3 4 5 6 7 8 9 10 11

Broadcast request Broadcast write-back Data transfer

Fig. 2: Blocking communication due to shared memory responses.

messages that are ready to be broadcasted, and the PWB
buffer holds pending write-back responses due to memory
activity of other cores. When an owner observes a remote
request, it marks the modified cache line for write-back and
records the address in its PWB buffer. Write-back responses
and requests access the shared snooping bus. This is because
servicing requests in the PR buffer involves either broadcasting
the request or receiving the requested data from the shared
memory, and servicing write-back responses involves sending
the write-back data to shared memory. Hence, each core
deploys work conserving round-robin (RR) arbitration between
servicing pending requests and write-back responses in the PR
and PWB buffers to limit interference on the shared bus.

V. HIGH LEVEL OVERVIEW OF CARP

CARP delivers performance benefits by allowing (1) com-
municating tasks to be distributed across cores, and (2) com-
municated data to be cached in the private caches of cores. It
follows the template of guidelines put forth by Hassan et al.
[41], and includes new features specifically catered for multi-
core MCS. There are two interference scenarios that arise due
to communication to/from level E tasks on the WCL bounds
of critical tasks: (1) interference scenario due to data responses
from shared memory and (2) interference scenario due to
write-backs. CARP disallows these interference scenarios
through two techniques: (1) forces level E cores to abort-
and-retry in the presence of simultaneous communication from
critical cores on the same shared data and (2) partitions the
PWB buffer to isolate write-back responses for critical cores
from non-critical cores, and schedule write-back responses
from non-critical cores in slack. In the following section, we
illustrate these interference scenarios and the impact of the
techniques using a 4-core system (c0−c3) that executes a level
A, B, C and E task respectively. For ease of explanation, we
consider a schedule that uses TDM arbitration. This schedule
allocates one slot for each levels A-C cores to manage concur-
rent accesses to the shared memory. Following the guidelines
set by Mollison et al. [32], we use slack to schedule data
communication to/from E tasks.

A. Interference due to data responses from shared memory

Observation. Figure 2 highlights the interference scenario due
to data responses from shared memory. In the first slot, cA

0

broadcasts a write request to data X. The shared memory sends

A B C A B C A B C A B

Worst-case latency

cA0
cB1
cC2
cE3 Latency due to arbitration

WB X WB Y WB Z
Blocking latency due to level A-D task

1 2 3 4 5 6 7 8 9 10 11
Blocking latency due to level E task

Broadcast request Broadcast write-back Data transfer

X

Y
Z

Fig. 3: Blocking communication due to write-back responses.

X in the same slot, and cA
0 completes its request. An updated

copy of X resides in the private memory of cA
0 , and a stale

copy of X resides in shared memory. The second slot, which
is allocated to cB

1 , is unused by cB
1 making it a slack slot.

Suppose cE
3 uses this slack slot and broadcasts a read request

to X. Since, cA
0 has an updated version of X, it has to write back

the update to the shared memory before the shared memory
can send X to cE

3 . Hence, cA
0 must wait for its allocated slot

to update the shared memory (slot 4). In the third slot, cC
2

broadcasts a write request to X. In slot 5, cB
1 issues a write

request to X, and will receive X from the shared memory after
cC
2 . After cA

0 updates the shared memory with the updated X,
the shared memory can send data to the cores waiting on X. To
maintain data correctness, the shared memory must send data
in the order of requests [41], [42]. For example, if the shared
memory reorders data response to cB

1 ’s request over that of
cC
2 ’s request then cB

1 will receive a value X updated only by cA
0

and not by cA
0 and cC

2 . As a result, cB
1 operates on incorrect X

value, which compromises data correctness. Hence, the shared
memory must first send data to cE

3 and then to cC
2 and cB

1 . This
blocking of data communication from the shared memory to
cC
2 and cB

1 due to cE
3 is highlighted in red in Figure 2.

Solution. One potential solution is to prioritize data responses
from shared memory to critical tasks over data responses to
level E tasks. However, we observe that prioritization can
indefinitely defer the data responses to level E tasks, which
limits level E tasks’ effectiveness to MCS functioning. For
the example in Figure 2, consider that the shared memory
prioritizes responses to cC2 and cB1 over the response to
cE3 . Since cB1 does a store operation, the memory and cB1
move to the modified state (M) after sending and receiving
X respectively. After cB1 completes the store operation, two
conflicting scenarios exist that prevent cE3 to receive X: (1)
the shared memory cannot send X to cE3 as it must wait for
cB1 to write-back the updated X, and (2) cB1 does not mark
X for write-back as it does not observe the pending read
from cE3 , which was issued earlier than cB1 ’s request. Hence,
an alternative solution that does not indefinitely defer data
responses to level E tasks is necessary.

Revisiting the above example, we observe that if cE3 aborts
its current request to X on observing remote requests to X
from critical cores and retries its request to X after observing

requests from cC2 and cB1 , then cB1 observes the request from
cE3 and schedules the write-back response for X. The order
of requests observed by the shared memory will be cC2 , cB1 ,
and cE3 , and the shared memory can send the updated X to cE3
after cB1 completes its write-back. Hence, the abort-and-retry
mechanism ensures that critical cores will not be blocked by
data responses to level E cores and level E cores will receive
their data responses. Note that this mechanism in CARP offers
a trade-off between the value received by a level E core for
a request to shared data and the freedom from blocking due
to communication to/from level E cores on the WCL bounds
of critical cores. In particular, a level E core may receive a
more updated value of the requested data compared to the
value of the data when the level E core broadcasted its first
request to the requested data. We find this trade-off to be
acceptable as ensuring no interference from non-critical cores
to the temporal requirements of critical cores is a key safety
requirements in MCS [27], [45].

B. Interference due to write-back responses

Observation. Hassan et al. [41] proposed the PWB data
structure in the CC to isolate requests made by a core that miss
in the private cache and write-back responses due to memory
activity from other cores [41]. They applied a predictable work
conserving round-robin (RR) arbitration mechanism between
the PR and PWB buffers as both cache miss requests and
write-back responses require access to the shared bus [41].
However, their cache coherence protocol does not consider
communication between mixed-critical and non-critical tasks
[41]. Using Figure 3, we show that the current PWB design
can cause blocking interference to critical cores in the presence
of data communication between critical and non-critical cores.

Figure 3 modifies the example in Figure 2 such that cE3 , cC2
and cB1 access different data blocks (X, Y, and Z respectively)
that are modified by cA0 and reside in cA0 ’s private cache.
Hence, cE3 requests X in slot 2, cC2 requests Y in slot 3, and cB1
requests Z in slot 5. On observing these requests, cA0 marks
blocks X, Y, and Z for write-back by placing these blocks in its
PWB buffer. Based on the guidelines listed in [41], write-back
responses in a core’s PWB are scheduled in a first-in-first-out
(FIFO) order. Hence, in the first available slot of cA0 that is
marked for write-back, which is slot 4 in Figure 3, cA0 will
write-back X followed by write-backs to Y and Z in slots 7 and
10, respectively. Although the data requested by the critical
cores are different from that requested by cE3 , the FIFO order
of draining the write-backs results in blocking communication
to the critical cores as highlighted in Figure 3. In Figure 3,
data response to cC2 (Y) is blocked by the write-back response
for cE3 on X, which further blocks the data response to cB1 (Z).
Solution. To eliminate this blocking interference, we partition
the PWB of each core to isolate write-back responses for
critical cores and non-critical cores, and schedule write-back
responses from the partition containing write-back responses
to non-critical cores in slack. Applying this approach for the
example in Figure 3, cA0 will schedule the write-backs to Y

and Z in slots 4 and 7 respectively, and does not incur any
blocking interference from cE3 ’s write-back response.

The rationale for using slack to schedule write-back re-
sponses for non-critical cores is based on the observation
that implementing a cache coherence protocol for data com-
munication increases the availability of slack in the system.
This occurs because cores experience a larger number of
hits in their private caches, which reduces the number of
accesses to the shared memory. In turn, this reduces the
utilization of the cores’ allocated slots rendering them to be
slack. Our evaluation shows that when using cache coherence,
up to 40% and 76% of the allocated slots are unused for
synthetic and real-world benchmarks rendering them as slack.
Conventional slack allocation policies allocated slack to low
criticality and non-critical cores that have pending requests
[32], [33], [46]. In this work, we propose a different slack
allocation policy that allocates slack for ready requests from
low criticality and non-critical cores and pending write-back
responses from non-critical PWBs across cores. Scheduling
write-back responses due to non-critical cores in slack ensures
no blocking interference due to write-backs on the WCL
bounds of critical cores.

Note that CARP allows bounded timing interference on
the timing guarantees of levels A-D cores due to other levels
A-D cores. This bounded timing interference comes from
the (1) predictable arbitration on the shared memory and
(2) read-write memory activity of other levels A-D cores.
Timing interference from (1) is a natural consequence when
arbitrating accesses to a shared resource. The ISO-26262
standard suggests that tasks of different criticality levels can
co-exist in the same memory partition as long as a lower
critical task does not interfere with the timing requirements
of a higher critical task (ISO-26262-9 §6.5) [27]. Given the
examples of timing interference listed in ISO-26262 (Annex
D in ISO-26262-6) [27], CARP does not allow for unbounded
blocking of execution.

VI. CARP IMPLEMENTATION

In this section, we describe implementations of the tech-
niques presented in Section V. To implement abort-and-retry,
level E cores must differentiate the criticality levels of requests
broadcasted on the bus. Similarly, the PWB partitioning mech-
anism requires critical cores to differentiate between critical
and non-critical requests to enqueue write-back responses in
the appropriate PWB partitions. To this end, CARP’s coher-
ence protocol and architectural extensions enable CARP to
be criticality aware. Figure 4 shows CARP’s protocol state
machine and the architectural extensions necessary to support
CARP. CARP implements two coherence protocols: (1) for
level A-D cores (Figure 4a) and (2) for level E cores (Figure
4b). Figure 4c shows the architectural extensions. Table II
tabulates the transient states most relevant to the main con-
tributions in this work, the events leading to the transient
state (Cause field), and the operations executed by the CC
in the transient state (Action field). A complete description

of the protocol can be found in https://git.uwaterloo.ca/caesr-
pub/mcs-carp.

A. Implementing abort-and-retry for level E cores

CARP introduces a criticality register in each core’s cache
controller that tracks the criticality level of the current task
scheduled for execution by the real-time operating system
(RTOS) as shown in Figure 4c. This allows the cache controller
to broadcast the criticality level. Initializing the contents of the
criticality register can be done either by the RTOS scheduler,
or by the task through software extensions prior to a task’s
execution. The cache controller (CC) looks up the criticality
level in this register when generating coherence messages.

Figures 4a and 4b show the protocol specifications to
support abort-and-retry memory requests. For each request
generated by a core, the core’s CC looks up the contents of
the criticality register and broadcasts the request along with
the core’s criticality information. For critical cores, the CCs
broadcast read (R) and write requests (W) as Rl and W l

respectively where l ∈ {A,B,C,D} based on the criticality
register contents. For non-critical cores, the CCs broadcast
read requests as RE.

Figure 4a shows CARP’s protocol specifications for data
communication between critical tasks in which all critical
cores follow the same transitions and state changes for data
communication between critical cores. On the other hand,
Figure 4b shows CARP’s protocol specifications for data
communication between level E cores and critical cores in
which different transitions are exercised based on the criticality
levels of the remote requests. We revisit the example in Section
V-A to highlight the state transitions for cE

3 in Figure 4b and
for cores cC

2 and cB
1 in Figure 4a. cE

3 broadcasts its request to
X, and transitions from I to a transient state that denotes cE

3 is
waiting on data from the shared memory. The shared memory
records cE

3 ’s pending request in the PR LUT. cA
0 observes the

level E remote read request on the shared bus, and updates
its non-critical PWB with a pending write-back response to
X. cA

0 then transitions from M → 2 . While cE
3 is waiting for

the data response, cC
2 broadcasts a request to X. Due to this

broadcast, two state transitions are exercised: (1) cA
0 observes

a critical read request and transitions from 2 → 3 (Figure
4a) and updates its critical PWB with a pending write-back
response to X and (2) cE

3 observes a critical read request and
moves to the transient state denoted as 1 in Figure 4b. At
transient state 1 , cE

3 aborts its current request, and retries the
read request to X by regenerating the read request.

Aborting a request requires discarding all information about
the request from the system. In cA

0 , there are two pending write-
back responses to X: (1) in the non-critical PWB due to cE

3 ’s
request and (2) in the critical PWB due to cC

2 ’s request. At
the PR LUT, there is an entry corresponding to requests from
cE
3 and cC

2 . Hence, the aborting mechanism discards the write-
back response in cA

0 ’s non-critical PWB due to cE
3 ’s request and

the PR LUT entry corresponding to cE
3 ’s request. Discarding

entries in the non-critical PWB is done during the transition
between transient states 2 to 3 . Prior to updating the critical

(a) CARP cache coherence protocol
for levels A, B, C, D cores

(b) CARP cache coherence
protocol for level E cores (c) CARP architectural extensions

M

I

S

Wl

Wl
Wl

Wl Rl

Rl

Wl

Wl
Rl

Wl

RWl

Rl

RWl

Rl RWl

Rl

Wl

RWl

RWl

RWl

RE

Rl

2

3

S
RE

RE
R/WA/B/C/D

RE 1

I

WA/B/C/DRE

RERl
Wl

4

Core activity Data response
Reissue request

Rl: Read from criticality level l
Wl: Write from criticality level l Transient state

Abort-and-Retry state
Remote core activity

Address Address

Address Core ID Coherence
message

CL

3 bits

Address

MCS arbiter

Shared memory

Critical PWB
RR arbitration

Criticality register (3bits)

Core c0
D-$ I-$ CC

c1
cn

PR

PR LUT

Non-Critical PWB

Fig. 4: CARP protocol specification.
TABLE II: Transient states and transitions introduced in CARP.

Transient state Cause Action
AR (1) A level E core waiting for data response observes a remote

read/write request from a critical core.
Level E core aborts and retries its request.

MSwb − E (2) A critical core that has modified data in private cache observes
a remote read request from level E core.

The critical core enqueues write-back response in non-critical
PWB.

MSwb (3) A critical core that has modified data in private cache observes
a remote read request from another critical core.

The critical core enqueues write-back response in critical PWB
and removes any matching entry in non-critical PWB.

IMDS − E (4) A critical core waiting for data response to complete store op-
eration (M) observes remote load request from level E core.

After completing store on data response, core enqueues write-back
response in non-critical PWB.

PWB, the CC scans the non-critical PWB for write-back
responses to the same data, and discards them. CARP extends
the PR LUT with criticality information and introduces logic
in the shared memory controller that discards entries for level
E cores in the PR LUT when the shared memory observes
critical cores’ data communication on the same data.

The above set of transitions for cE
3 repeat on observing

cB1 ’s remote request to X. Hence, the final order of requests
observed by the cores and shared memory to X is: cC

2 , cB1 and
cE
3 . If there are no other requests to X from other critical cores

between cE
3 request and its response from shared memory, X

in cE
3 transitions to S on receiving X from the shared memory.

Note that in the presence of critical requests to the same shared
data, E-cores can continuously abort and retry their memory
requests. We allow for this as temporal bounds are not required
for level E cores.

B. Implementing PWB partitioning and slack scheduling for
non-critical write-back responses

To address the blocking interference due to a single per-core
PWB buffer (Section V-B), CARP partitions the PWB into a
critical-PWB and a non-critical PWB as shown in Figure 4c.
Critical PWB enqueue write-back responses due to requests
from critical cores, and non-critical PWB enqueue write-back
responses due to requests from non-critical cores. For the
example in Figure 3, the critical-PWB of cA0 will have write-
back responses for Y and Z, and the non-critical PWB of cA0
will have write-back response for X. To ensure that critical
cores are not blocked by write-back responses due to level
E cores, the arbitration policy between requests and write-back
responses is only applied to the PR buffer and critical-PWB
partition as shown in Figure 4c.

At the start of a slack slot, we prioritize ready requests from
levels C-D cores over write-back responses and requests from
level E cores as levels C-D cores execute higher criticality
tasks. If there are no ready requests from levels C-D cores,
the critical and non-critical PWBs of all cores are checked, and
a write-back request is scheduled if found. If no ready requests
from levels C-D cores and write-back responses in the cores
are found, the slack slot is allocated to a level E core. We use
RR to arbitrate across requests from multiple level E cores.

VII. LATENCY ANALYSIS

We derive the per-request worst-case latency (WCL) bound
a core experiences when it accesses data. The WCL bound of
the requesting core has three latency components: (1) latency
to broadcast data request on the network (request latency),
(2) latency for a remote core with an updated copy of the
requested data and/or the shared memory to place the data
response on the network (communication latency), and (3) the
latency of the data response to arrive at the requesting core (re-
sponse latency). The arbitration scheme determines the request
and response latencies. The communication latency, however,
depends on the simultaneous communication between other
cores in the system on the requested data. The WCL bound is
the summation of these latency components.

A. Preliminaries

We envision CARP to be deployed on prior MCS-specific
arbitration schemes such as [14], [15] that either combine
different arbitration policies (TDM and RR) [15] or allocate
different number of slots based on the core’s criticality level
(weighted TDM) [14]. The key features of these arbitration
schemes are: (1) differential service guarantees to cores based

cA0 cA0 cB1
T

X0

R

Y0
cA0 cB1 cA0 cA0 cB1cA0 cB1

TDM phase RR phaseSW

P
Fig. 5: Generalized MCS arbitration scheme [15].

TABLE III: Symbols used in latency analysis.
Symbol Description
SW Slot width
cli Core i running level l task
si Slots allocated to core cli
Xi Slots between two allocated slots of cli
Yi Slots between two allocated slots of cli
T Length of RR-phase (includes reserve slot)
R Slots between two RR-phases
P Arbitration period

on their criticality levels [14], [15], and (2) slack allocation
for lower critical tasks [6], [33]. We capture these features in
a representative arbitration scheme (shown in Figure 5), and
use this scheme to derive the WCL bounds. Computing details
such as the allocation of slots to cores is beyond the scope of
this work; hence, these details are abstracted as arbitration
parameters in the latency analysis.

The generic arbitration scheme consists of two arbitration
phases: a weighted TDM arbitration phase (TDM-phase), and a
RR arbitration phase (RR-phase). Levels A and B cores (CAB)
access the bus using TDM arbitration policy, and levels C and
D cores (CCD) access the bus using RR arbitration policy. We
set the TDM slot width SW to be equal to completing one
memory access. This slot width takes into account the latency
to communicate coherence messages and data between cores
and shared memory via the shared bus. We denote si as the
number of slots allocated to cli in the weighted TDM schedule.
For example, s0 = 3 and s1 = 2 in Figure 5. For a core cli,
we use Xi to mean the maximum number of slots between its
next dedicated slot, and Yi as the next maximum number of
slots between its next dedicated slot. A RR-phase consists of a
sequence of time slots that are distributed to cores in a work-
conserving RR manner. Once a core is granted access to the
bus in a RR-phase, it relinquishes access when the request is
completed or a threshold amount of time (SW) elapses when
the core is granted access to the bus. We denote R as the
number of slots between two RR-phases as shown in Figure 5.
A RR-phase is augmented with a reserve time slot to avoid bus
interference between cores accessing the bus in RR-phase and
TDM-phase phases [15]. In-flight requests that accessed the
bus in a RR-phase are allowed to complete in the reserve slot.
However, new requests from cores are not allowed to access
the bus in the reserve slot. The length of a RR-phase, which
includes the reserve slot, is denoted as T . The key difference
between slots in the RR-phase and TDM-phase is that cores
can access the bus at any time instance in a RR-phase, whereas
cores access the bus at the start of a slot in a TDM-phase. The
arbitration period is denoted as P . Level E cores are granted
access to the bus in slack. We denote the latency to transfer
data from the shared memory to the core as Lacc. Table III
summarizes the symbols used in the latency analysis.

Note that CARP is not only designed for MCS-specific

arbitration schemes, and can also be deployed on a simple
TDM arbitration scheme that allocates equal number of slots
to all cores in the system. However, the latency analysis for
levels C-D cores, and their impact on the analysis of levels
A-B cores will change as the analysis in the following section
assumes RR allocation for levels C-D cores.

B. Analysis

First, we derive the worst-case request and data response
latencies of a request issued by a core under analysis clua
based on its criticality level (Theorems 1-2). Then, we present
a critical instance that results in the worst-case communication
latency incurred by clua’s request (Lemma 1). The critical
instance identifies the memory access pattern of cores of
different criticality levels that interfere with the data response
of clua’s request to X. From this critical instance, Lemma 2
derives the worst-case number of cores and their criticality
levels that interfere with clua’s request, and Theorems 3-4
derive the worst-case communication latencies of clua based
on the criticality levels of the interfering cores. The WCL
bounds are computed for criticality levels A-D. CARP does
not provide any WCL bounds for level E cores; hence, we do
not derive their WCL bounds.
Theorem 1. The worst-case request latency for clua to X is
given by:

WCLReq(clua) =

(2 +Xua + Yua)× SW : if l ∈ {A,B}
2×

(
d |C

CD|
T
e × (1 +R)

+|CCD| − 1
)
× SW : if l ∈ {C,D}

Proof. Consider the following two cases. The first case is
when l ∈ {A,B}, and the second case is when l ∈ {C,D}.
Suppose clua such that l ∈ {A,B} accesses the shared bus
during its pre-allocated TDM slot. In the worst-case, clua
attempts to broadcast a request immediately after the start of
its TDM slot. Since requests must be broadcasted on the bus
at the start of the slot, clua can only successfully broadcast
its request during its next pre-allocated TDM slot. Thus, clua
must wait for the duration of its own slot whose start it just
missed, and all other dedicated slots preceding its own next
slot in the arbitration schedule (Xua) resulting in a latency of
(1 + Xua) slots. In the worst-case, this slot is allocated for
servicing write-back responses. As a consequence, clua must
wait an additional (1 + Yua) for its next slot to broadcast
its request. Therefore, in the worst-case, the broadcast request
latency for clua is (2+Xua+Yua) slots. Suppose clua such that
l ∈ {C,D} accesses the shared bus. The worst-case scenario
occurs when clua attempts to broadcast a request when all other
(|CCD|−1) cores have pending requests. Hence, clua is blocked
from successfully broadcasting its request while the |CCD|−1
pending requests are serviced. These |CCD| − 1 cores can
access the bus over multiple round-robin arbitration rounds,
which we compute by d |C

CD|
T e. Therefore, clua must wait for

(d |C
CD|
T e) number of reserve slots, and (d |C

CD|
T e) number of R

slots, which comprises of TDM slots of CAB cores. After this
delay, clua receives a slot to issue its request. However, in the

worst-case, this slot may be used to service clua’s write-back
response. Consequently, clua must wait an additional latency of
(d |C

CD|
T e×(1+R)+ |CCD|−1) slots resulting in a total broad-

cast request latency of 2×
(
d |C

CD|
T e×(1+R)+|CCD|−1

)
.

Theorem 2. The worst-case response latency for clua to
receive X is given by:

WCLResp(clua) =WCLReq(clua) + Lacc

Proof. Data responses are also sent from shared memory at
the start of the receiving core’s slot. As a result, the worst-case
response latency is equal to the worst-case request latency and
Lacc. We omit the proof of this theorem as it is similar to the
proof of Theorem 1.

Lemma 1. The worst-case communication latency of clua
where l ∈ {A,B,C,D} when data is communicated across
criticality levels occurs when clua issues a read or write request
to line X such that (1) α levels A and B cores broadcast write
request to X before clua’s request is broadcasted, and (2) β
levels C and D cores broadcast write requests to X before
clua’s request is broadcasted.

Proof. There are two cases to consider. The first case proves
by contradiction that a scenario in which at least one A-
D core broadcasts a read request instead of a write request
to X does not result in the worst-case communication latency.
The second case proves by contradiction that a scenario in
which at least one A-D core broadcasts a write request after
clua broadcasts its request to X does not result in the worst-
case interference latency. We use Figure 6 to assist in the
readability of the proof by contrasting these cases with the
worst-case scenario for a 4-core MCS multi-core platform.

Suppose ∃ cli where l ∈ {A,B,C,D} that broadcasts a read
request to X instead of a write request. Recall from Section
III that a read request from one core does not require write-
backs from other cores (SWMR invariant). As a result, clua
will not experience any interference from cli. Hence, clua’s
data response will incur communication latency from α+β−1
cores, which is less than that from α+β cores. As an example,
consider the following modification to the worst-case scenario
depicted in Figure 6: cC2 broadcasts a read request to X instead
of a write request. cC2 receives X in slot 16. Since cC2 ’s request
is a read, and does not modify X, cD3 can receive X and
complete its write request in slot 17. cA0 waits for cD3 to
complete the write-back for X, and receives X in slot 24, which
is less than the worst-case instance (30 slots).

Suppose ∃ cli where l ∈ {A,B,C,D} that broadcasts a write
request after clua broadcasts its request to X. As a result, cli will
receive X after clua receives X. Hence, clua’s data response will
not incur any interference from cli resulting in communication
latency less than that when |α(l)| + |β(l)| cores broadcast
write requests before clua broadcasts its request to X. As an
example, consider the following modification to worst-case
scenario depicted in Figure 6: cB1 broadcasts its write request
to X after cA0 broadcasts its read request to X. Therefore, cA0

receives X before cB1 in slot 24, and does not incur the latency
of cB1 to do a write-back resulting in a lower WCL.

Lemma 2. For clua where l ∈ {A,B,C,D}, the maximum
number of level A-B cores (α(l)), and the maximum number
of level C-D cores (β(l)) that can broadcast requests before
clua broadcasts its request is given by:

α(l) =

{
|CAB \ {clua}| : if l ∈ {A,B}
|CAB| : if l ∈ {C,D}

β(l) =

min(|CCD|, dWCLReq(clua)

P
e × (T − 1)

+max(0, (O − |CE |))) : if l ∈ {A,B}
|CCD \ {clua}| : if l ∈ {C,D}

where O is the total number of slack slots in WCLReq(clua), and is
computed as
O =WCLReq(clua)− dWCLReq(clua)

P
e × T − α.

Proof. Suppose l ∈ {A,B}. From Theorem 1, WCLReq
ua com-

prises of Xua slots in which |CAB|−1 cores can broadcast their
requests to X. Hence, |α(l)| = |CAB \{clua}| when l ∈ {A,B}.
Suppose l ∈ {C,D}. From Theorem 1, WCLReq

ua comprises
of at least R slots in which |CAB| cores can broadcast their
requests to X Hence, |α(l)| = |CAB| when l ∈ {C,D}.
Suppose l ∈ {A,B}. WCLReq

ua comprises of dWCLReq
ua

P e round-
robin arbitration phases for CCD cores to broadcast requests.
Since the round-robin arbitration phase is of length T slots,
and consists of one reserve slot where cores are allowed
to complete pending requests but cannot broadcast requests,
dWCLReq

ua

P e × (T − 1) level C-D cores can broadcast requests
in WCLReq

ua . Furthermore, we allow CCD cores to broadcast
requests in slack slots that are not utilized by CE cores. The
total number of slack slots is denoted as O. If O− |CE | > 0,
then there are slack slots that can be utilized by CCD cores to
broadcast requests. If O−|CE | ≤ 0, then there are enough CE

cores to utilize the slack slots. The maximum number of CCD

cores that can broadcast requests to X is bounded by |CCD|.
Suppose l ∈ {C,D}. WCLReq

ua comprises of |CCD| slots where
all remaining |CCD| − 1 receive a slot to broadcast requests.
As a result, |CCD| \ {clua} cores can broadcast requests before
clua broadcasts its request.

Theorem 3. The worst-case communication latency incurred
by clua’s request to X where l ∈ {A,B} due to cmj ’s interfering
write request to X is given by:

WCLComm
l,m =

{
d 2
sj
e × P × SW : if m ∈ {A,B}

(2× d |C
CD|
T
e)× P × SW : if m ∈ {C,D}

Proof. cmj requires two allocated slots after broadcasting its
request to receive the data for X, and write-back X. This is
because after cmj broadcasts its request to X, cmj receives X
from memory, and must write-back X in the next slot resulting
in a latency of 2 allocated slots of cmj . Suppose cmj such that
m ∈ {A,B}. Since cmj requires two slots to receive, update,
and write-back X, the total communication latency due to cmj ’s
request to X is d 2

sj
e × P slots.

Suppose cmj such that m ∈ {C,D}. Since cmj is granted
access to the bus using RR arbitration policy, cmj must wait

Broadcast store A Receive A Request latencyBroadcast load A

WB

cA0 cA0 cB1 cA0cC2/cD3

Time

WB
WB

0 1 2 3 6 7 8 9 12 13 14 154 5 10 11 16 17 18 19 20 21 22 23 24 25 26 27 28 29

cA0 cA0 cB1 cA0cC2/cD3 cA0 cA0 cB1 cA0cC2/cD3 cA0 cA0 cB1 cA0cC2/cD3 cA0 cA0 cB1 cA0cC2/cD3

cA0
cB1
cC2
cD3

Fig. 6: Worst-case instance for a 4-core system. clua is cA0 .

(d |C
CD|
T e− 1)×P slots to receive X. Hence, the total commu-

nication latency due to cmj ’s request to X is (2×d |C
CD|
T e)×P

slots.
Theorem 4. The worst-case communication latency incurred
by clua’s request to X where l ∈ {C,D} due to cmj ’s interfering
write request to X is given by:

WCLComm
l,m =

2×
(
d |C

CD|
T
e × (1 +R)+

|CCD|
)
× SW : if m ∈ {A,B}

3×
(
d |C

CD|
T
e × (1 +R)+

|CCD|
)
× SW : if m ∈ {C,D}

Proof. Suppose cmj such that m ∈ {A,B}. Recall that a core
requires two allocated slots to receive and modify X, and write-
back X. As a result, cmj requires d 2

sj
e × P slots to complete

these operations on X. Since R denotes the number of slots
between two successive round-robin arbitration phases in the
schedule, and |CCD| > T , 2× (d |C

CD|
T e× (1 +R) + |CCD|) >

d 2
sj
e. Hence, clua must wait 2× (d |C

CD|
T e × (1 +R) + |CCD|)

slots to receive X. Suppose cmj such that m ∈ {C,D}. When
|CCD| > T , in the worst-case, cmj is allocated one slot in
every round-robin arbitration phase. As a result, cmj requires

2× (d |C
CD|
T e× (1+R)+ |CCD|) slots to receive and modify X,

and write-back X. Since clua is also allocated one slot in every
round-robin arbitration phase in the worst-case, clua must wait
3× (d |C

CD|
T e × (1 +R) + |CCD|) slots to receive X.

Theorem 5. The total worst-case latency incurred by clua’s
request to X where l ∈ {A,B,C,D} is given by:

WCLTotal(clua) =
WCLReq(clua) +

∑
i∈α(l)+β(l)WCLComm

l,i

+WCLResp(clua)

Proof. The total WCL of clua’s request includes the worst-
case request and data response latencies, and the worst-case
communication latency due to interfering cores |α(l)|+ |β(l)|.

C. Discussion

A key distinguishing feature between the WCL bounds of
PMSI [41] and CARP is that WCL bounds in CARP are
independent of the number of level E cores. On the other hand,
WCL bounds in PMSI increase with level E cores as PMSI
elevates level E cores to critical cores. Hence, CARP provides
tighter WCL bounds for critical cores compared to PMSI.

The above analysis derives the per-request WCL bound
to shared data that has both read and write permissions. On
the other hand, the WCL bound of a request to shared data

TABLE IV: Hybrid arbitration policy parameters.
Parameter Value

P 15 slots
X0, X1, X2, X3 11, 11, 13, 13 slots
Y0, Y1, Y2, Y3 0 slots

R 12 slots
T 3 slots
SW 50 cycles

|α(A/B)|, |α(C/D)| 3 cores, 4 cores
|β(A/B)|, |β(C/D)| 2 cores, 2 cores

that has only read permissions is SW cycles as there are no
coherence transitions for read-only shared data. Using static
analysis tools, we envision the following process that utilizes
the derived WCL bounds to compute the end-to-end WCET of
a task. Static analysis tools can provide information on (1) the
read/write patterns to a memory address and (2) the number
of cores accessing a memory address. Based on the read/write
patterns to a memory address, the appropriate WCL bound
can be used, and the number of cores accessing a memory
address can be used to substitute the parameters α and β
derived previously in the analysis. Hence, the WCET of the
task can be derived by applying this procedure to the memory
addresses accessed by the task.

VIII. METHODOLOGY

We use gem5 [47] to evaluate CARP. gem5 is a micro-
architectural simulator that models the memory subsystem and
coherence protocol with high precision. CARP is simulated
on a multi-core platform that comprises of 8 cores (c0-c7)
running at 2GHz. Our simulated multi-core platform does not
run an OS. The cores implement in-order pipelines, and cores
can have a single pending memory request. We allocate the
following criticalities to the cores: cA0 , cA1 , cB2 , cB3 , cC4 , cC5 ,
cD6 , cE7 . Note that these allocations to cores are only done
for empirical evaluation, a different mapping is also possible.
Each core has a private L1 32KB 4-way instruction cache and
32KB 4-way data cache. The access latency to each private
cache is set to 3 cycles. All cores share a 1MB set associative
last-level cache (LLC). We configure the LLC such that all
LLC accesses are hits in order to isolate and focus on the
impact of maintaining cache coherence on the shared data
access latencies. We set the LLC access latency to 50 cycles.
Both the private L1 caches and shared LLC operate on cache
line sizes of 64 bytes. The cores and the shared LLC are
connected via a shared snooping bus that deploys an instance
of the generalized arbitration policy described in Table IV.

We evaluate CARP against prior data communication mech-
anisms proposed for multi-core real-time and MCS platforms

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
72

1.
76

1.
53 1.
64 1.
78

1.
58 1.
62 1.
72

1.
69

1.
67

2.
90 2.
98

2.
72 2.
92 3.
02

2.
75 3.

05 3.
13

3.
00

2.
943.

36

3.
28

3.
29

3.
32

3.
25

3.
23

3.
21 3.
42

3.
35

3.
30

4.
46

4.
28

4.
20 4.
25

4.
24 4.
32

4.
23 4.
39

4.
39

4.
31

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Synth-1 Synth-2 Synth-3 Synth-4 Synth-5 Synth-6 Synth-7 Synth-8 Synth-9 Average

Sp
ee

du
p

Cache bypassing Duplicate copy Task mapping PMSI CARP
Fig. 7: Performance of design choices and CARP on synthetic workloads.

TABLE V: Observed WCL for synthetic benchmarks.
Level Analytical WCL (cycles) Observed WCL (cycles)

A 6600 4348
B 6800 3701

C/D 11200 6699

such as (1) duplication of communicated data [7], [48], (2)
cache bypassing of communicated data [7], [49], [50], (3)
mapping communicating tasks to the same core [6], and (4) the
recently proposed PMSI cache coherence protocol [41]. For
the PMSI cache coherence protocol, we elevate level E cores
to critical cores as PMSI was designed for multi-core real-time
systems where all cores are of the same criticality level [41].
We also evaluate CARP against MSI and MESI conventional
cache coherence protocols [42]. Prior work showed that that
deploying conventional coherence protocols on a predictable
bus arbitration scheme can result in unbounded latencies for
shared data accesses [41]. Hence, the conventional MSI and
MESI protocols are executed on a snooping bus that does not
deploy a predictable arbitration policy. We do not evaluate
CARP against HourGlass [28] as it does not deal with tasks
of varying criticality levels, and does not provide enough
guidance on setting timer values.

Our evaluation uses synthetic benchmarks and SPLASH-
2 [29], a multi-threaded benchmark suite. In the synthetic
benchmarks (Synth1-Synth9), all cores except cE

7 perform the
same sequence of operations (read/write) on shared data. cE

7

only performs read operations on shared data. As a result,
these benchmarks stress the states and transitions of CARP.
The synthetic benchmarks vary with each other based on the
proportion of read and write operations. For these benchmarks,
we run our simulation for 100,000 total memory operations
across all cores. The SPLASH-2 benchmark suite consists of
multi-threaded benchmarks derived from various domains such
as graphics rendering, and scientific computation [29]. We use
the SPLASH-2 benchmark suite due to a lack of available
multi-threaded applications that operate on shared data, and are
representative of those used in MCS. We run all SPLASH-2
benchmarks until completion. We used the SPLASH-2 bench-
mark to verify the data correctness of CARP, and observed
that all benchmarks terminated with correct data output when
executed using CARP.

IX. RESULTS

A. Synthetic workloads

Observed WCL. Table V shows the per-request observed
total WCL across synthetic benchmarks deployed on CARP.
CARP guarantees that the observed WCL are within the

computed WCL bounds for critical cores across all bench-
marks. In all benchmarks, the maximum observed request,
data response, and communication latency components are
within their respective analytical WCL bounds. We observe
that the maximum request, and data response are equal to the
respective analytical WCL bounds, and the maximum observed
communication latencies vary across benchmarks as they are
dependent on the memory activity on shared data. Benchmarks
do not reach the maximum communication latency derived
from the analysis because cores complete their requests earlier
due to slack slots, and work conserving RR arbitration policies.

Average-case performance. Figure 7 shows the speedup in
total execution time for the synthetic benchmarks using the
design choices described earlier and CARP. We normalize the
execution time to the cache bypassing data communication
mechanism. Duplicating communicated data and mapping
tasks to the same core offer better performance over private
cache bypassing as they allow communicated data to reside in
the private caches. As a result, these techniques offer 1.67x
and 2.94x performance speedup over cache bypassing. Note
that duplicating communicated data increases the arbitration
period as it requires level A-D cores to communicate updates
to communicated data to the duplicate copies, and hence,
does not perform as well as the task mapping technique.
Mechanisms that use cache coherence (PMSI and CARP)
offer better performance over task co-location technique as
these mechanisms do not restrict task parallelism, and allow
multiple copies of communicated data to reside in the private
caches of all cores. CARP performs better than PMSI (30%
on average) due to slack allocation for level E cores and the
MCS arbitration schedule. Unlike PMSI, CARP is deployed
on an arbitration policy that allocates different number of slots
to cores based on their criticality levels. As a result, level A-
D communicate more than one data in an arbitration period,
which improves their communication throughput.

Performance slowdown relative to MSI and MESI. Con-
ventional coherence protocols (MSI and MESI) are designed
for average-case performance, and are not designed to be
predictable [41], [51]. These protocols are not deployed on a
predictable bus arbitration mechanism. As a result, a core can
broadcast its request as soon as the CC generates the request
or immediately complete a write-back response on observing a
remote write request. CARP exhibits an average performance
slowdown of 73% and 66% compared to the MESI and MSI
cache coherence protocols respectively. We find this slowdown
reasonable for achieving predictability.

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
001.
17

1.
03

1.
03 1.
08

0.
99

1.
01

0.
88 1.
01 1.
17

1.
04

1.
94

2.
66

1.
51 1.
63

1.
49

1.
31

1.
29

1.
14

2.
83

1.
67

0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3

Radiosity Radix FMM Cholesky Raytrace FFT Barnes LU Ocean Average

Sp
ee
du
p

PMSI CARP MSI
Fig. 8: Performance of CARP on SPLASH-2.

B. SPLASH-2 workloads

For SPLASH-2 workloads, we run CARP with level A-
D cores and no level E cores. This is because, in SPLASH-
2 workloads, all launched threads read and write on shared
data structures such as locks and conditional barriers during
execution in order to maintain benchmark correctness. We
confirmed that the observed WCL bounds for level A-D cores
are within the analytical bounds (not shown). Figure 8 shows
the performance speedup of CARP compared to PMSI and
the conventional MSI cache coherence protocol. The results
are normalized to PMSI. We observe that CARP offers a
performance improvement of 4% over PMSI, and shows an
average slowdown of 60% compared to the conventional MSI
protocol. In these benchmarks, thread barriers force all threads
to converge at the barrier before making forward progress. As
a consequence, level A and B cores that may benefit from
the additional allocated slots end up waiting for level C and
D cores that have fewer allocated slots resulting in increased
execution time.

X. RELATED WORKS

There has been limited attention towards designing pre-
dictable data communication between tasks of different criti-
cality levels in a multi-core MCS platform [1], [6]. Chisholm
et al. [6] proposed a technique to allow data communication
between levels A-C tasks in a multi-core MCS platform.
Their technique applied mechanisms such as cache bypassing,
mapping communicating tasks to one core, cache locking, and
data duplication to enable task communication. As a result,
their technique relies on OS and hardware support. In contrast,
CARP is a hardware technique that does not restrict the usage
of caches, does not require a particular mapping of tasks to
cores, and does not duplicate communicated data. Becker et al.
[1] proposed an alternative approach that constructed offline
schedules of computation and memory phases of tasks such
that contending data communication between multiple tasks
were not scheduled at the same time. This approach relied on
the availability of memory and compute details of the real-time
tasks. CARP on the other hand, does not require information
about the compute and memory behavior of the tasks.

Prior data communication techniques for multi-core real
time systems used three main approaches: 1) disabled caching
of communicated data in private caches [6], [49], [50], 2) repli-
cated communication data [48], and 3) scheduled tasks that
communicate data with each other on the same core through
OS changes [6], [48], [52], [53]. These approaches provided
predictable data sharing at the cost of reduced average-case
performance. Alternatively, Pyka et al. [54] modified the

application such that data communication on the same data
were protected using software locks. The effect was that only
one core performed data communication at any time instance.
CARP on the other hand allows multiple cores to carry out
their data communication simultaneously. Hassan et al. [41]
recently described a set of guidelines for predictable data
communication between real-time tasks using hardware cache
coherence, and proposed PMSI, a predictable cache coherence
protocol to that was built on these guidelines. CARP is also
built using these design guidelines, and includes additional
features that enable CARP to be criticality-aware, and satisfy
requirements specific to MCS. Sritharan et al. [28] recently
proposed HourGlass, a time-based cache coherence protocol
for dual-critical MCS systems. In this protocol, cores retain
lines in their private caches for a duration of time period
irrespective of the remote memory activity on the same lines,
and the lines self-invalidate after the time period. The key
novelty in HourGlass was that the time periods for a line were
configured based on (1) the owner’s criticality level and (2)
the remote cores’ criticality levels that issued memory requests
to the same line. As a consequence, in HourGlass, memory
activity of non-critical cores on shared data contributed to
the WCL bounds of critical cores [28], which further requires
an extension to the safety guidelines put forward in the ISO-
26262 and AUTOSAR standards. On the other hand, CARP is
designed to allow for data communication between critical and
non-critical cores such that memory activity of non-critical
cores do not contribute to the WCL bounds of critical cores.

Recently, Sensfelder et al. [55] provided a formal framework
to model and analyze the latency interference in conventional
bus based cache coherence protocols. We are motivated to
apply similar models to CARP in order to formally verify
the sources of interference due to data sharing in MCS, and
reserve this exploration for future work.

XI. CONCLUSION

As MCS platforms continue to integrate multiple complex
tasks of varying criticality levels, enabling data communication
between these tasks will be essential to realize added func-
tionality and improve the overall responsiveness of the MCS.
In this work, we present CARP, a criticality-aware hardware
cache coherence protocol to realize predictable and high
performance data communication between tasks executing on
a multi-core MCS without violating the safety requirements
of critical tasks. Our evaluation of CARP using synthetic
and real-world benchmarks show that CARP guarantees the
safety requirements of critical tasks, and improves average-
case performance of MCS compared to prior techniques.

XII. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
valuable feedback and suggestions.

REFERENCES

[1] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nlis, and T. Nolte,
“Contention-free execution of automotive applications on a clustered
many-core platform,” in Euromicro Conference on Real-Time Systems
(ECRTS), pp. 14–24, 2016.

[2] M. Jung, S. A. McKee, C. Sudarshan, C. Dropmann, C. Weis, and
N. Wehn, “Driving into the memory wall: The role of memory for ad-
vanced driver assistance systems and autonomous driving,” in Proceed-
ings of the International Symposium on Memory Systems (MEMSYS),
(New York, NY, USA), pp. 377–386, ACM, 2018.

[3] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing archi-
tectures in avionics,” in European Dependable Computing Conference,
pp. 132–143, IEEE, 2012.

[4] A. Burns and R. I. Davis, “A Survey of Research into Mixed Criticality
Systems,” ACM Computing Surveys, pp. 82:1–82:37, 2018.

[5] S. Vestal, “Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance,” in Real-Time Systems
Symposium (RTSS), pp. 239–243, IEEE, Dec 2007.

[6] M. Chisholm, N. Kim, B. C. Ward, N. Otterness, J. H. Anderson,
and F. D. Smith, “Reconciling the tension between hardware isolation
and data sharing in mixed-criticality, multicore systems,” in Real-Time
Systems Symposium (RTSS), pp. 57–68, IEEE, Nov 2016.

[7] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst, “Commu-
nication Centric Design in Complex Automotive Embedded Systems,” in
Euromicro Conference on Real-Time Systems (ECRTS), pp. 10:1–10:20,
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[8] E. Bost, “Hardware support for robust partitioning in freescale qoriq
multicore socs (p4080 and derivatives),” Freescale Semiconductor, Inc.,
Tech. Rep., 2013.

[9] C. E. Salloum, M. Elshuber, O. Hftberger, H. Isakovic, and A. Wasicek,
“The ACROSS MPSoC – A New Generation of Multi-core Processors
Designed for Safety-Critical Embedded Systems,” in Euromicro Confer-
ence on Digital System Design, pp. 105–113, IEEE, Sept 2012.

[10] B. D. de Dinechin, R. Ayrignac, P. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and
T. Strudel, “A clustered manycore processor architecture for embedded
and accelerated applications,” in High Performance Extreme Computing
Conference (HPEC), pp. 1–6, IEEE, Sep. 2013.

[11] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann, et al.,
“T-CREST: Time-predictable multi-core architecture for embedded sys-
tems,” Journal of Systems Architecture, pp. 449–471, 2015.

[12] NVIDIA, “JETSON TK1: Unlock the power of the GPU for embedded
systems applications,” 2016.

[13] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
Access Control in Multiprocessor for Real-Time Systems with Mixed
Criticality,” in Euromicro Conference on Real-Time Systems (ECRTS),
pp. 299–308, IEEE Computer Society, 2012.

[14] M. Hassan and H. Patel, “Criticality- and Requirement-Aware Bus
Arbitration for Multi-Core Mixed Criticality Systems,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp. 1–11,
IEEE, April 2016.

[15] B. Cilku, A. Crespo, P. Puschner, J. Coronel, and S. Peiro, “A TDMA-
Based arbitration scheme for mixed-criticality multicore platforms,” in
International Conference on Event-based Control, Communication, and
Signal Processing (EBCCSP), IEEE, June 2015.

[16] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling
of Mixed-criticality Applications on Resource-sharing Multicore Sys-
tems,” in International Conference on Embedded Software (EMSOFT),
pp. 17:1–17:15, ACM, 2013.

[17] A. Kritikakou, C. Pagetti, O. Baldellon, M. Roy, and C. Rochange, “Run-
time control to increase task parallelism in mixed-critical systems,” in
Euromicro Conference on Real-Time Systems (ECRTS), pp. 119–128,
IEEE, July 2014.

[18] D. Guo and R. Pellizzoni, “A requests bundling DRAM controller for
mixed-criticality systems,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 247–258, IEEE, 2017.

[19] M. Hassan, H. Patel, and R. Pellizzoni, “PMC: A Requirement-Aware
DRAM Controller for Multicore Mixed Criticality Systems,” ACM
Transactions on Embedded Computing Systems, pp. 100:1–100:28, 2017.

[20] H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava, and J. Oh,
“A predictable and command-level priority-based DRAM controller for
mixed-criticality systems,” in Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 317–326, IEEE, April 2015.

[21] P. K. Gadepalli, G. Peach, G. Parmer, J. Espy, and Z. Day, “Chaos:
a System for Criticality-Aware, Multi-core Coordination,” in Real-Time
and Embedded Technology and Applications Symposium (RTAS), IEEE,
2019.

[22] AUTOSAR, “Overview of functional safety measures in autosar,”
vol. 4.4.0, 2018.

[23] AUTOSAR, “Autosar model constraints,” vol. 4.3.1, 2017.
[24] X. Zheng, C. Julien, R. Podorozhny, and F. Cassez, “BraceAssertion:

Runtime Verification of Cyber-Physical Systems,” in International Con-
ference on Mobile Ad Hoc and Sensor Systems, pp. 298–306, IEEE, Oct
2015.

[25] X. Zheng, C. Julien, R. Podorozhny, F. Cassez, and T. Rakotoarivelo,
“Efficient and Scalable Runtime Monitoring for CyberPhysical System,”
IEEE Systems Journal, pp. 1667–1678, June 2018.

[26] C. W. W. Wu, D. Kumar, B. Bonakdarpour, and S. Fischmeister,
“Reducing monitoring overhead by integrating event- and time-triggered
techniques,” in Runtime Verification, pp. 304–321, Springer Berlin
Heidelberg, 2013.

[27] I. O. for Standardization, “ISO 26262,” 2011.
[28] N. Sritharan, A. M. Kaushik, M. Hassan, and H. D. Patel, “Hourglass:

Predictable time-based cache coherence protocol for dual-critical multi-
core systems,” CoRR, abs/1706.07568, 2017.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in International Symposium on Computer Architecture (ISCA),
ISCA ’95, (New York, NY, USA), pp. 24–36, ACM, 1995.

[30] Federal Aviation Administration (FAA), “Position Paper CAST-32A,”
2016.

[31] RTCA Inc., “Software Considerations in Airborne Systems and Equip-
ment Certification,” 1992.

[32] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and
J. A. Scoredos, “Mixed-criticality real-time scheduling for multicore
systems,” in International Conference on Computer and Information
Technology (CIT), (Washington, DC, USA), pp. 1864–1871, IEEE
Computer Society, 2010.

[33] F. Hebbache, M. Jan, F. Brandner, and L. Pautet, “Shedding the shackles
of time-division multiplexing,” in Real-Time Systems Symposium (RTSS),
pp. 456–468, IEEE, Dec 2018.

[34] M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens,
“A Globally Arbitrated Memory Tree for Mixed-Time-Criticality Sys-
tems,” IEEE Transactions on Computers, pp. 212–225, Feb 2017.

[35] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoud-
hury, “Static analysis of multi-core TDMA resource arbitration delays,”
Real-Time Systems, pp. 185–229, 2014.

[36] M. Yoon, J. Kim, and L. Sha, “Optimizing Tunable WCET with Shared
Resource Allocation and Arbitration in Hard Real-Time Multicore
Systems,” in Real-Time Systems Symposium (RTSS), pp. 227–238, IEEE,
Nov 2011.

[37] M. Schoeberl, W. Puffitsch, S. Hepp, B. Huber, and D. Prokesch, “Pat-
mos: A Time-predictable Microprocessor,” Real-Time Systems, pp. 389–
423, 2018.

[38] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “PRET DRAM
controller: Bank privatization for predictability and temporal isolation,”
in International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pp. 99–108, IEEE/ACM, Oct 2011.

[39] G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and
M. Caccamo, “Designing Mixed Criticality Applications on Modern
Heterogeneous MPSoC Platforms,” in Euromicro Conference on Real-
Time Systems (ECRTS), Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2019.

[40] M. Hassan, “Heterogeneous MPSoCs for Mixed-Criticality Systems:
Challenges and Opportunities,” IEEE Design Test, pp. 47–55, 2018.

[41] M. Hassan, A. M. Kaushik, and H. Patel, “Predictable Cache Coher-
ence for Multi-core Real-Time Systems,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 235–246, IEEE,
2017.

[42] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory
consistency and cache coherence,” Synthesis Lectures on Computer
Architecture, 2011.

[43] A. Cortex, “Cortex-A9 MPCore,” Technical Reference Manual, 2009.
[44] N. Kurd, P. Mosalikanti, M. Neidengard, J. Douglas, and R. Kumar,

“Next generation Intel® core micro-architecture (nehalem) clocking,”
IEEE Journal of Solid-State Circuits, 2009.

[45] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller,
P. Heitkämper, G. Kinkelin, K. Nishikawa, and K. Lange, “Autosar–a
worldwide standard is on the road,” in 14th International VDI Congress
Electronic Systems for Vehicles, Baden-Baden, vol. 62, p. 5, 2009.

[46] A. Kostrzewa, S. Saidi, and R. Ernst, “Slack-based Resource Arbitration
for Real-time Networks-on-chip,” in Design, Automation & Test in
Europe (DATE), pp. 1012–1017, EDA Consortium, 2016.

[47] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” SIGARCH Computer Architecture News, pp. 1–7, 2011.

[48] N. Kim, M. Chisholm, N. Otterness, J. H. Anderson, and F. D.
Smith, “Allowing shared libraries while supporting hardware isolation in
multicore real-time systems,” in Real-Time and Embedded Technology
and Applications Symposium (RTAS), pp. 223–234, IEEE, 2017.

[49] D. Hardy, T. Piquet, and I. Puaut, “Using Bypass to Tighten WCET
Estimates for Multi-Core Processors with Shared Instruction Caches,”
in Real-Time Systems Symposium (RTSS), pp. 68–77, IEEE, 2009.

[50] B. Lesage, D. Hardy, and I. Puaut, “Shared Data Caches Conflicts
Reduction for WCET Computation in Multi-Core Architectures.,” in
18th International Conference on Real-Time and Network Systems,
(Toulouse, France), p. 2283, Nov. 2010.

[51] G. Gracioli and A. A. Frhlich, “On the influence of shared memory
contention in real-time multicore applications,” in Brazilian Symposium
on Computing Systems Engineering, pp. 25–30, Nov 2014.

[52] J. M. Calandrino and J. H. Anderson, “On the Design and Implementa-
tion of a Cache-Aware Multicore Real-Time Scheduler,” in Euromicro
Conference on Real-Time Systems (ECRTS)), pp. 194–204, IEEE, 2009.

[53] G. Gracioli and A. A. Fröhlich, “On the Design and Evaluation of a Real-
Time Operating System for Cache-Coherent Multicore Architectures,”
ACM SIGOPS Operating Systems Review - Special Topics, vol. 49,
pp. 2–16, Jan. 2016.

[54] A. Pyka, M. Rohde, and S. Uhrig, “Extended performance analysis
of the time predictable on-demand coherent data cache for multi-
and many-core systems,” in International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIV), pp. 107–114, IEEE, July 2014.

[55] N. Sensfelder, J. Brunel, and C. Pagetti, “Modeling Cache Coherence
to Expose Interference,” in Euromicro Conference on Real-Time Sys-
tems (ECRTS), pp. 18:1–18:22, Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2019.

